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Abstract

Federated learning is a framework for collaborative machine learning where clients
only share gradient updates and not their private data with a server. However,
it was recently shown that gradient inversion attacks can reconstruct this data
from the shared gradients. In the important honest-but-curious setting, existing
attacks enable exact reconstruction only for batch size of b = 1, with larger batches
permitting only approximate reconstruction. In this work, we propose SPEAR, the
first algorithm reconstructing whole batches with b > 1 exactly. SPEAR combines
insights into the explicit low-rank structure of gradients with a sampling-based
algorithm. Crucially, we leverage ReLU-induced gradient sparsity to precisely filter
out large numbers of incorrect samples, making a final reconstruction step tractable.
We provide an efficient GPU implementation for fully connected networks and
show that it recovers high-dimensional ImageNet inputs in batches of up to b ≲ 25
exactly while scaling to large networks. Finally, we show theoretically that much
larger batches can be reconstructed with high probability given exponential time.

1 Introduction
Exact Recon.

(SPEAR – ours)

Approximate
Recon. [1]

Original
Image

Figure 1: A sample of four images from a batch of
b = 20, reconstructed using our SPEAR (top) or
the prior state-of-the-art Geiping et al. [1] (mid),
compared to the ground truth (bottom).

Federated Learning has emerged as the dom-
inant paradigm for training machine learning
models collaboratively without sharing sensitive
data [2]. Instead, a central server sends the cur-
rent model to all clients which then send back
gradients computed on their private data. The
server aggregates the gradients and uses them to
update the model. Using this approach sensitive
data never leaves the clients’ machines, aligning
it better with data privacy regulations such as
the General Data Protection Regulation (GDPR)
and California Consumer Privacy Act (CCPA).

Gradient Inversion Attacks Recent work has shown that an honest-but-curious server can use the
shared gradient updates to recover the sensitive client data [3, 4]. However, while exact reconstruction
was shown to be possible for batch sizes of b = 1 [5, 6], it was assumed to be infeasible for larger
batches. This led to a line of research on approximate methods that sacrificed reconstruction quality
in order to recover batches of b > 1 inputs [7, 8, 9]. In this paper we challenge this fundamental
assumption and, for the first time, show that exact reconstruction is possible for batch sizes b > 1.

This Work: Exact Reconstruction of Batches We propose the first gradient inversion attack
reconstructing inputs exactly for batch sizes b > 1 in the honest-but-curious setting. In Fig. 1, we
show the resulting reconstructions versus approximate methods [1] for a batch of b = 20 images.
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Our approach leverages two key properties of gradient updates in fully connected ReLU networks:
First, these gradients have a specific low-rank structure due to small batch sizes b≪ n,m compared
to the input dimensionality n and the hidden dimension m. Second, the (unknown) gradients with
respect to the inputs of the first ReLU layer are sparse due to the ReLU function itself. We combine
these properties with ideas from sparsely-used dictionary learning [10] to propose a sampling-based
algorithm, called SPEAR (Sparsity Exploiting Activation Recovery) and show that it succeeds with
high probability for b < m. While SPEAR scales exponentially with batch size b, we provide a
highly parallelized GPU implementation, which empirically allows us to reconstruct batches of size
up to b ≲ 25 exactly even for large inputs (IMAGENET) and networks (widths up to 2000 neurons
and depths up to 9 layers) in around one minute per batch.

Main Contributions:
• The first gradient inversion attack showing theoretically that exact reconstruction of complete

batches with size b>1 in the honest-but-curious setting is possible.
• SPEAR: a sampling-based algorithm leveraging low rankness and ReLU-induced sparsity

of gradients for exact gradient inversion that succeeds with high probability.
• A highly parallelized GPU implementation of SPEAR, which we empirically demonstrate

to be effective across a wide range of settings and make publicly available on GitHub.

2 Method Overview

Figure 2: Overview of SPEAR. The gradient ∂L
W is de-

composed to R and L. Sampling gives N proposal direc-
tions, which we filter down to c candidates via a sparsity
criterion with threshold τ ∗m. A greedy selection method
selects batchsize b directions. Scale recovery via ∂L

∂b re-
turns the disaggregation matrix Q and thus the inputs X .

We first introduce our setting before giv-
ing a high-level overview of our attack
SPEAR, whose sketch is shown in Fig. 2.

Setting We consider a neural network
f containing a linear layer z = Wx +
b followed by ReLU activations y =
ReLU(z) trained with a loss function L.
Let now X ∈ Rn×b be a batch of b inputs
to the linear layer Z = WX+(b| . . . |b),
with weights W ∈ Rm×n, bias b ∈ Rm

and output Z ∈ Rm×b. Further, let Y ∈
Rm×b be the result of applying the ReLU
activation to Z, i.e., Y = ReLU(Z) and
assume b ≤ m,n. The goal of SPEAR is
to recover the inputs X (up to permutation) given the gradients ∂L

∂W and ∂L
∂b (see Fig. 2, i).

Low-Rank Decomposition We first show that the weight gradient ∂L
∂W = ∂L

∂ZX⊤ naturally
has a low rank b ≤ m,n (Theorem 3.1) and can therefore be decomposed as ∂L

∂W = LR with
L ∈ Rm×b and R ∈ Rb×n using SVD (Fig. 2, ii). We then prove the existence disaggregation matrix
Q = (q1| . . . |qb) ∈ GLb(R), allowing us to express the inputs as X⊤ = Q−1R and activation
gradients as ∂L

∂Z = LQ (Theorem 3.2). Next, we leverages the sparsity of ∂L
∂Z to recover Q exactly.

ReLU Induced Sparsity We show that ReLU layers induce sparse activation gradients ∂L
∂Z

(Sec. 3.2). We then leverage this sparsity to show that, with high probability, there exist sub-
matrices LA ∈ Rb−1×b of L, such that their kernel is an unscaled column qi of our disaggregation
matrix Q, i.e., ker(LA) = span(qi), for all i ∈ {1, . . . , b} (Theorem 3.3). Given these unscaled
colmuns qi, we recover their scale by leveraging the bias gradient ∂L

∂b (Theorem 3.5).

Sampling and Filtering Directions To identify the submatrices LA of L which induce the direc-
tions qi, we propose a sampling approach (Sec. 4.1): We randomly sample b− 1 rows of L to obtain
an LA and thus proposal direction q′

i = ker(LA) (Fig. 2 iii). Crucially, the product Lq′
i =

∂L
∂zi

recovers a column of the sparse activation gradient ∂L
∂Z for correct directions q′

i and a dense linear
combination of such columns for incorrect ones. This sparsity gap allows the large number N of
proposal directions obtained from submatrices LA to be filtered to c ≳ b unique candidates (Fig. 2 iv).
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Greedy Direction Selection We now have to select the correct b directions from our set of c
candidates (Fig. 2, v). To this end, we build an initial solution Q′ from the b directions inducing the
highest sparsity in ∂L

∂Z

′
= LQ′. To assess the quality of this solution Q′, we introduce the sparsity

matching score σ which measures how well the sparsity of the activation gradients ∂L
∂Z

′
matches the

ReLU activation pattern induced by the reconstructed input X ′⊤ = Q′−1R. Finally, we greedily
optimize Q′ to maximize the sparsity matching score, by iteratively replacing an element q′

i of Q′

with the candidate direction q′
j yielding the greatest improvement in σ until convergence. We can

then validate the resulting input X⊤ = Q−1R by checking whether it induces the correct gradients.
We formalize this as Alg. 1 in Sec. 5 and show that it succeeds with high probability for b < m.

3 Gradient Inversion via Sparsity and Low-Rankness

In this section, we will demonstrate that both low rankness and sparsity arise naturally for gradients
of fully connected ReLU networks and explain theoretically how we recover X . Specifically, in
Sec. 3.1, we first argue that ∂L

∂W = ∂L
∂ZXT follows direclty from the chain rule. We then show that

for every decomposition ∂L
∂W = LR, there exists an unknown disaggregation matrix Q allowing us to

reconstruct X⊤ = Q−1R and ∂L
∂Z = LQ. The remainder of the section then focuses on recovering

Q. To this end, we show in Sec. 3.2 that ReLU layers induce sparsity in ∂L
∂Z , which we then leveraged

in Sec. 3.3 to reconstruct the columns of Q up to scale. Finally, in Sec. 3.4, we show how the scale of
Q’s columns can be recovered from ∂L

∂b . Unless otherwise noted, we defer all proofs to App. B.

3.1 Explicit Low-Rank Representation of ∂L
∂W

We first show that the weight gradients ∂L
∂W can be written as follows:

Theorem 3.1. The network’s gradient w.r.t. the weights W can be represented as the matrix product:
∂L
∂W

=
∂L
∂Z

XT . (1)

For batch sizes b ≤ n,m, the dimensionalities of ∂L
∂Z ∈ Rm×b and X ∈ Rn×b in Eq. 1 directly yield

that the rank of ∂L
∂W is at most b. This confirms the observations of Kariyappa et al. [9] and shows

that X and ∂L
∂Z correspond to a specific low-rank decomposition of ∂L

∂W .

To actually find this decomposition and thus recover X , we first consider an arbitrary decomposition
of the form ∂L

∂W = LR, where L ∈ Rm×b and R ∈ Rb×n are of maximal rank. We chose the
decomposition obtained via the reduced SVD decomposition of ∂L

∂W = USV by setting L = US
1
2

and R = S
1
2V , where U ∈ Rn×b, S ∈ Rb×b and V ∈ Rb×n. We now show that there exists an

unique disaggregation matrix Q recovering X and ∂L
∂Z from L and R:

Theorem 3.2. If the gradient ∂L
∂Z and the input matrix X are of full-rank and b ≤ n,m, then there

exists an unique matrix Q ∈ Rb×b of full-rank s.t. ∂L
∂Z = LQ and XT = Q−1R.

Theorem 3.2 is a direct application of Lemma B.1 shown in App. B, a general linear algebra result
stating that under most circumstances different low-rank matrix decompositions can be transformed
into each other via an unique invertible matrix. Crucially, this implies that recovering the input X
and the gradient ∂L

∂Z matrices is equivalent to obtaining the unique disaggregation matrix Q. Next,
we show how the ReLU-induced sparsity patterns in ∂L

∂Z or X can be leveraged to recover Q exactly.

3.2 ReLU-Induced Sparsity

ReLU activation layers can induce sparsity both in the gradient ∂L
∂Z (if the ReLU activation succeeds

the considered linear layer) or in the input (if the ReLU activation precedes the linear layer).

Gradien Sparsity If a ReLU activation succeeds the linear layer, i.e., Y = ReLU(Z), we have
∂L
∂Z = ∂L

∂Y ⊙ 1[Z>0], where ⊙ is the elementwise multiplication and 1[Z>0] is a matrix of 0s and 1s
with each entry indicating if the corresponding entry in Z is positive. At initialization, roughly half
of the entries in Z are positive, making ∂L

∂Z sparse with ∼ 0.5 of the entries = 0.
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Input Sparsity ReLUs also introduce sparsity if the linear layer in question is preceded by a ReLU
activation. Here, X = ReLU(Z̃) will again be sparse with ∼ 0.5 of the entries = 0 at initialization.

Note that for all but the first and the last layer of a fully connected network, we have sparsity in both,
X and ∂L

∂Z . Due to the symmetry of their formulas in Theorem 3.2, our method can be applied in
all three arising sparsity settings. In the remainder of this work, we assume w.l.o.g. that only ∂L

∂Z
is sparse, corresponding to the first layer of a fully connected network. We now describe how to
leverage this sparsity to compute the disaggregation matrix Q and thus recover the input batch X .

3.3 Breaking Aggregation through Sparsity

Our exact recovery algorithm for the disaggregation matrix Q is based on the following insight:

If we can construct two submatrices A ∈ Rb−1×b and LA ∈ Rb−1×b by choosing b− 1 rows with
the same indices from ∂L

∂Z and L, respectively, such that A has full rank and an all-zero ith column,
then the kernel ker(LA) of LA contains a column qi of Q up to scale. We formalize this as follows:

Theorem 3.3. Let A ∈ Rb−1×b be a submatrix of ∂L
∂Z s.t. its ith column is 0 for some i ∈ {1, . . . , b}.

Further, let ∂L
∂Z , X , and A be of full rank and Q be as in Theorem 3.2. Then, there exists a full-rank

submatrix LA ∈ Rb−1×b of L s.t. span(qi) = ker(LA) for the ith column qi of Q = (q1| · · · |qb).

Proof. Pick an i ∈ {1, . . . , b}. By assumption, there exists a submatrix A ∈ Rb−1×b of ∂L
∂Z of rank

b−1 whose ith column is 0. To construct LA, we take rows from L with indices corresponding to A’s
row indices in ∂L

∂Z . As ∂L
∂Z and X have full rank, by Theorem 3.2, we know that ∂L

∂Z = LQ, and hence
A = LAQ. Multiplying from the right with ei yields 0 = Aei = LAQei = LAqi, and hence
ker(LA) ⊇ span(qi). Further, as rank(A) = b − 1 and rank(Q) = b, we have that rank(LA) =
b− 1. By the rank-nullity theorem dim(ker(LA)) = 1 and hence ker(LA) = span(qi).

As ∂L
∂Z is not known a priori, we can not simply search for such a set of rows. Instead, we have to

sample submatrices LA of L at random and then filter them using the approach discussed in Sec. 4.
However, we will show in Sec. 5.2 that we will find suitable submatrices with high probability for
b < m due to the sparsity of ∂L

∂Z and the large number
(

m
b−1

)
of possible submatrices. We will now

discuss how to recover the scale of the columns qi given their unscaled directions qi forming Q.

3.4 Obtaining QQQ: Recovering the Scale of columns in QQQ

Given a set of b correct directions Q = (q1| · · · |qb), we can recover their scale, enabling us to
reconstruct X , as follows. We first represent the correctly scaled columns as qi = si · qi with the
unknown scale parameters si ∈ R. Now, recovering the scale is equivalent to computing all si. To
this end, we leverage the gradient w.r.t. the bias ∂L

∂b :

Theorem 3.4. The gradient w.r.t. the bias b can be written in the form ∂L
∂b = ∂L

∂Z

[
1...
1

]
.

Thus, the coefficients si can be calculated as:

Theorem 3.5. For any left inverse L−L of L, we have
[ s1...

sb

]
= Q−1L−L ∂L

∂b

Theorem 3.5 allows us to directly obtain the true matrix Q = Qdiag(s1, . . . , sb) from the unscaled
matrix Q. We now discuss how to recover Q via sampling and filtering candidate directions qi.

4 Efficient Filtering and Validation of Candidates

In the previous section, we saw that given the correct selection of submatrices LA, we can recover Q
directly. However, we do not know how to pick LA a priori. To solve this, we rely on a sampling
approach: We first randomly sample submatrices LA of L and corresponding direction candidates q′

spanning ker(LA). However, checking whether q′ is a valid direction is not straightforward as we do
not know ∂L

∂Z and hence can not observe A directly as reconstructing ∂L
∂Z = LQ requires the full Q.
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To address this, we filter the majority of wrong proposals q′ using deduplication and a sparsity-based
criterion (Sec. 4.1), leaving us with a set of candidate directions C = {q′

j}j∈{1,...,c}. We then select
the correct directions in C greedily based on a novel sparsity matching score (Sec. 4.2).

4.1 Efficient Filtering of Directions qqq′

Filtering Mixtures via Sparsity It is highly likely (p = (1− 1
2b−1 )

b) that a random submatrix of L
will not correspond to an A with any 0 column. We filter these directions by leveraging the following
insight. The kernel of such submatrices is spanned by a linear combination q′ =

∑
i αiqi. Thus Lq′

will be a linear combination of sparse columns of ∂L
∂Z . As this sparsity structure is random, linear

combinations will have much lower sparsity with high probability. We thus discard all candidates q′

with sparsity of Lq′ below a threshold τ , chosen to make the probability of falsely rejecting a correct
direction pfr(τ,m) = 1

2m

∑⌊m·τ⌋
i=0

(
m
i

)
, obtained from the cumulative distribution function of the

binomial distribution, small. For example for m = 400 and pfr(τ,m) < 10−5, we have τ = 0.395.
We obtain the candidate pool C = {q′

j}j∈{1,...,c} from all samples that were not filered this way.

Filtering Duplicates As it is highly likely to have multiple full-rank submatrices A, whose ith

column is 0, we expect to sample the same proposal q′
i multiple times. We remove these duplicates

to substantially reduce our search space.

4.2 Greedy Optimization

While filtering duplicates and linear combinations significantly reduces the number c of candidates,
we usually still have to select a subset of b < c. Thus, we have

(
c
b

)
possible b sized subsets, each

inducing a candidate Q′ and thus X ′. A naive approach is to compute the gradients for all X ′ and
compare them to the ground truth. However, this is computationally infeasible even for moderate c.

To address this, we propose a greedy two-stage procedure optimizing a novel sparsity matching
score λ, which resolves the computational complexity issue above while also accurately selecting the
correct batch elements and relying solely on ∂L

∂Z

′
and Z ′. As both can be computed directly via Q′,

the procedure is local and does not need to backpropagate gradients. Next, we explain the first stage.

Dictionary Learning [10] As a first stage, we leverage a component of the algorithm proposed
by Spielman et al. [10] for sparsely-used dictionary learning. This approach is based on the insight
that the subset of column vectors B = {q′

i}bi=1, yielding the sparsest full-rank gradient matrix ∂L
∂Z is

often correct. As the scaling of q′
i does not change the sparsity of the resulting ∂L

∂Z , we can construct
the subset B by greedily collecting the b directions q′

i with the highest corresponding sparsity that
still increase the rank of B. While this method typically recovers most directions qi, it often misses
directions whose gradients ∂L

∂zi
are less sparse by chance.

Sparsity Matching We alleviate this issue by introducing a second stage to the algorithm where
we greedily optimize a novel correctness measure based solely on the gradients of the linear layer,
which we call the sparsity matching coefficient λ.
Definition 4.1. Let λ− be the number of non-positive entries in Z whose corresponding entries in
∂L
∂Z are 0. Similarly, let λ+ be the number of positive entries in Z whose corresponding entries in
∂L
∂Z are not 0. We call their normalized sum the sparsity matching coefficient λ:

λ =
λ− + λ+

m · b .

Intuitively, this describes how well the pre-activation values Z match the sparsity pattern of the
gradients ∂L

∂Z induced by the ReLU layer (See Sec. 3.2). While this sparsity matching coefficient λ can
take values between 0 and 1, it is exactly λ = 1 for the correct X , if the gradient ∂L

∂Y w.r.t. the ReLU
output is dense, which is usually the case. We note that λ can be computed efficiently for arbitrary
full rank matrix Q

′
by computing ∂L

∂Z

′
= LQ′ and Z ′ = WX ′ + (b| . . . |b) for X ′⊤ = Q′−1R.

To optimize λ, we initialize Q
′

with the result of the greedy algorithm in Spielman et al. [10], and then
greedily swap the pair of vectors q′

i improving λ the most, while keeping the rank, until convergence.
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5 Final Algorithm and Complexity Analysis

In this section, we first present our final algorithm SPEAR (Sec. 5.1) and then analyse its expected
complexity and failure probability (Sec. 5.2).

5.1 Final Algorithm

Algorithm 1 SPEAR

1: function SPEAR( m, n, W , b, ∂L
∂W , ∂L

∂b )
2: L,R, b← LOWRANKDECOMPOSE ( ∂L

∂W )
3: for i = 1 to N do
4: Sample a submatrix LA ∈ Rb−1×b of L
5: q′

i ← ker(LA)
6: if sparsity(Lq′

i) ≥ τ ∗m and q′
i /∈ C then

7: C ← C ∪ {q′
i}

8: λ,X ′ ← GREEDYFILT (L,R,W , b, ∂L
∂b , C)

9: if λ = 1 then
10: return X ′

11: end if
12: end if
13: end for
14: λ,X ′ ← GREEDYFILT (C)
15: return X ′

We formalize our gradient inversion
attack SPEAR in Alg. 1 and out-
line it below. First, we compute the
low-rank decomposition ∂L

∂W = LR

of the weight gradient ∂L
∂W via re-

duced SVD, allowing us to recover
the batch size b as the rank of ∂L

∂W
(Line 2). We now sample (at most
N ) submatrices LA of L and com-
pute proposal directions q′

i as their
kernel ker(LA) via SVD (Lines 4–
5). We note that our implementation
parallelizes both sampling and SVD
computation (Lines 4–5) on a GPU.
We then filter the proposal directions
q′
i based on their sparsity (Line 6),

adding them to our candidate pool C
if they haven’t been recovered already and are sufficiently sparse (Line 7). Once our candidate pool
contains at least b directions, we begin constructing candidate input reconstructions X ′ using our
two-stage greedy algorithm GREEDYFILTER (Line 8), discussed in Sec. 4.2. If this reconstruction
leads to a solution with sparsity matching coefficient λ = 1, we terminate early and return the
corresponding solution (Line 9). Otherwise, we continue sampling until we have reached N samples
and return the best reconstruction we can obtain from the resulting candidate pool (Line 14). The
pseudocode for COMPUTESIGMA (Alg. 2) and GREEDYFILTER (Alg. 3) are shown in App. C.

5.2 Analysis

In this section, we will analyze SPEAR w.r.t. the number of submatrices we expect to sample until
we have recovered all b correct directions qi (Lemma 5.2), and the probability of failing to recover
all b correct directions despite checking all possible submatrices of L (Lemma 5.3). For an analysis
of the number of submatrices we have to sample until we have recovered all b correct directions qi
with high probability, we point to Lemma B.2. Further, as before, we defer all proofs also to App. B.

0 80 160 240
Layer Width m

100

10−3

10−6

10−9

Failure Probability pfail

papprox
fail

pub
fail

b = 4

b = 8

b = 16

b = 32

b = 64

Figure 3: Visualizations of the upper bound (pub
fail,

dashed) on and approximation of (papprox
fail , solid) the

failure probability of SPEAR for different batch sizes
b and network widths m for pfr = 10−9.

Expected Number of Required Samples
To determine the expected number of re-
quired samples until we have recovered the
correct b direction vectors qi, we first com-
pute a lower bound on the probability q of
sampling a submatrix which satisfies the con-
ditions of Theorem 3.3 for an arbitrary col-
umn i in Q and then use the coupon collector
problem to compute the expected number of
required samples.

We can lower bound the probability of a sub-
matrix A ∈ Rb−1×b, randomly sampled as
b−1 rows of ∂L

∂Z , having exactly one all-zero
column and being full rank as follows:

Lemma 5.1. Let A ∈ Rb−1×b be submatrix of the gradient ∂L
∂Z obtained by sampling b − 1

rows uniformly at random without replacement, where each element of ∂L
∂Z is distributed i.i.d. as

∂L
∂Zj,k

= ζ|ϵ| with ϵ ∼ N (µ = 0, σ2 > 0) and ζ ∼ Bernoulli(p = 1
2 ). We then have the probability
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q of A having exactly one all-zero column and being full rank lower bounded by:

q ≥ b

2b−1

(
1− ( 12 + ob−1(1))

b−1
)
≥ b

2b−1
(1− 0.939b−1).

We can now compute the expected number of submatrices n∗
total we have to draw until we have

recovered all b correct direction vectors using the Coupon Collector Problem:
Lemma 5.2. Assuming i.i.d. submatrices A following the distribution outlined in Lemma 5.1 and
using Alg. 1, we have the expected number of submatrices n∗

total required to recover all b correct
direction vectors as:

n∗
total =

1

q

b−1∑
k=0

b

b− k
=

bHb

q
≈ 1

q
(b log(b) + γb+ 1

2 ),

where Hb is the bth harmonic number and γ ≈ 0.57722 the Euler-Mascheroni constant.

We validate this result experimentally in Fig. 4 where we observe excellent agreement for wide
networks (m≫ b) and obtain, e.g., n∗

total ≈ 1.8× 105 for a batch size of b = 16.

Failure Probability We now analyze the probability of SPEAR failing despite considering all
possible submatrices of L and obtain:
Lemma 5.3. Under the same assumptions as in Lemma 5.1, we have an upper bound on the failure
probability pub

fail of Alg. 1 even when sampling exhaustively as:

pub
fail ≤ b

(
1−

m∑
k=b−1

(
m

k

)
1

2m

(
1− 0.939(b−1)( k

b−1)
))

+ 1− (1− pfr)
b,

where pfr is the probability of falsely rejecting a correct direction qqq′ via our sparsity filter (Sec. 4.1).

If we assume the full-rankness of submatrices A to i) occur with probability 1− ( 12 − ob−1(1))
b−1

for ob−1(1) ≈ 0 (true for large b [11]) and ii) be independent between submatrices, we instead obtain:

papprox
fail ≈ 1−

(
m∑

k=b−1

(
m

k

)
1

2m

(
1− 0.5(b−1)( k

b−1)
))b

+ 1− (1− pfr)
b.

We illustrate this bound in Fig. 3 and empirically validate this bound in Fig. 8 and observe the true
failure probability to lie between papprox

fail and pub
fail.

6 Empirical Evaluation

Table 1: Comparison to prior work in
the image domain.
Method PSNR ↑ Time/Batch

CI-Net [12] Sigmoid 38.0 1.6 hrs
CI-Net [12] ReLU 15.6 1.6 hrs
Geiping et al. [1] 19.6 18.0 min
SPEAR (Ours) 124.2 2.0 min

In this section, we empirically evaluate the effectiveness
of SPEAR on MNIST [13], CIFAR-10 [14], TINYIMA-
GENET [15], and IMAGENET [16] across a wide range of
settings. In addition to the reconstruction quality metrics
PSNR and LPIPS, commonly used to evaluate gradient inver-
sion attacks, we report accuracy as the portion of batches for
which we recovered the batch up to numerical errors and the
number of sampled submatrices (number of iterations).

Experimental Setup For all experiments, we use our highly parallelized PyTorch [17] GPU
implementation of SPEAR. Unless stated otherwise, we run all experiments on CIFAR-10 batches of
size b = 20 using a 6 layer ReLU-activated FCNN with width m = 200 and set τ to achieve a false
rejection rate of pfr ≤ 10−5. We supply ground truth labels to all methods except SPEAR.

6.1 Comparison to Prior Work

In Table 1, we compare SPEAR against prior gradient inversion attacks from the image domain on
the IMAGENET dataset rescaled to 256× 256 resolution. In particular, we compare to Geiping et al.
[1]1, as well as, the recent CI-Net [12]. As CI-Net only considers networks with the less common
Sigmoid activations, we report its performance on both ReLU and Sigmoid versions of our network.

1We use so-called "modern" version of the attack from https://github.com/JonasGeiping/breaching
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Table 2: Results vs prior work in the tabular domain.

Method Discr Acc (%) ↑ Cont. MAE ↓ Time/Batch

Tableak [8] 97 4922.7 2.6 min
SPEAR (Ours) 100 20.4 0.4 min

We observe that while CI-Net obtains very
good reconstructions with the Sigmoid net-
work (PSNR of 38), SPEAR still achieves
a much higher PSNR (124) as it is exact.
Further, for the more common ReLU acti-
vations, the performance of CI-Net drops significantly to a PSNR < 16 compared to 19.6 for Geiping
et al. [1]. Additionally, SPEAR is much faster compared to both Geiping et al. [1] and CI-Net, taking
10× and 100× less time, respectively. Finally, we want to emphasize that both prior works rely
on strong prior knowledge, including label information and knowledge of the structure of images,
whereas we assume no information at all about the data distribution and still achieve much better
results in only a fraction of the time taken.

To confirm the versatility of SPEAR, we compare it to the SoTA attack in the tabular domain,
Tableak [8], in Table 2. We see that due to the exact nature of our attack, we recover both continuos
and discrete features better on the ADULT dataset [18] with b = 16, while still being 6× faster.

6.2 Main Results Table 3: Reconstruction quality across 100 batches.

Dataset PSNR ↑ LPIPS ↓ Acc (%) ↑ Time/Batch

MNIST 99.1 NaN 99 2.6 min
CIFAR-10 106.6 1.16×10−5 99 1.7 min
TINYIMAGENET 110.7 1.62×10−4 99 1.4 min
IMAGENET 224× 224 125.4 1.05×10−5 99 2.1 min
IMAGENET 720× 720 125.6 8.08×10−11 99 2.6 min

We evaluate SPEAR on MNIST,
CIFAR-10, TINYIMAGENET and
IMAGENET at two different res-
olutions, reporting results in Ta-
ble 3. Across datasets, SPEAR
can reconstruct almost all batches perfectly, achieving PSNRs of 100 and above even at a batch
size of b = 20 for images as large as 720 × 720 in < 3 minutes. We provide additional results on
heterogeneous data and trained networks in App. E, as well as, on the FedAvg protocol in App. F.

Figure 4: Effect of batch size b on the num-
ber of required submatrices. Expectation
from Lemma 5.2 dashed and median (10th to
90th percentile shaded) depending on network
width m solid. We always evaluate 104 sub-
matrices in parallel, explaining the plateau.

Effect of Batch Size b We evaluate the effect of
batch size b on accuracy and the required number of
iterations n∗

total for a wide (m = 2000) and narrow
(m = 200) network. While n∗

total increases exponen-
tially with b, for both networks, the narrower net-
work requires about 20 times more iterations than
the wider network (see Fig. 4). While trends for
the wider network (m≫ b) are perfectly described
by our theoretical results in Sec. 5.2, some inde-
pendence assumptions are violated for the narrower
network, explaining the larger number of required
iterations. While we can recover all batches per-
fectly for the wider network, we see a sharp drop
in accuracy from 99% at b = 20 to 63% at b = 24
(see Fig. 6) for the narrower network. This is due to
increasingly more batches requiring more than the
N = 2× 109 submatrices we sample at most.

102 103 104
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107

108 # Iter.

0

50

100
Acc [%]

2 3 6 9
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Median niter
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Accuracy [%]

Figure 5: Accuracy (green) and number of median iterations
(blue) for different network widths m at L = 6 (left) and
depths L at m = 200 (right).

Effect of Network Architecture We
visualize the performance of SPEAR
across different network widths and
depths in Fig. 5. We observe that while
accuracy is independent of both (given
sufficient width m ≫ b), the number
of required iterations reduces with in-
creasing width m. We provide further
ablations on the effect of our two-stage
filtering in App. E.3 and DPSGD noise
in App. E.6.

Effect of Layer Depth Our experiments so far focused on recovering inputs to the first layer
of FCNNs. However, SPEAR’s capabilities extend beyond this, as highlighted in Sec. 3.2. To
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demonstrate this, we use SPEAR to reconstruct the inputs to all FC layers followed by a ReLU
activation in a 6-layer FCNN with a width of m = 400 at initialization.

Table 4: Effect of the attacked layer’s
depth l (1 ≤ l ≤ 6) on reconstruction
time and quality for 100 TINYIMA-
GENET batches of size b = 20.

l MAE ↓ Acc(%) ↑ Time/Batch

1 1.06×10−6 100 2.3 min
2 1.33×10−6 100 2.2 min
3 1.67×10−6 100 5.6 min
4 2.80×10−6 99 19 min
5 3.04×10−6 83 70 min

The results, presented in Table 4, show that SPEAR suc-
cessfully recovers the inputs to all layers almost perfectly.
However, attacking later layers is more computationally ex-
pensive. Specifically, the runtime for l = 5 increases to 70
minutes/batch resulting in 17 batches that timed-out. This
increased computational cost is due to the initialization of
the network, which causes the outputs of later layers to be
dominated by their bias terms with their inputs being almost
irrelevant. This issue is mitigated after a few training steps,
as weights and biases adjust to better reflect the relationships
between inputs and outputs. We find that after 5000 gradient
steps the time per batch reduces to < 1 min at an accuracy of > 95% for layer l = 5.

6.3 Scaling SPEAR via Optimization-based Attacks

Table 5: Comparison between the reconstruction
quality of Geiping et al. [1] and a version of SPEAR
that uses Geiping et al. [1] to speed up its search pro-
cedure evaluated on 10 TINYIMAGENET batches.
Method b m Acc(%) ↑ PSNR ↑
Geiping et al. [1] 50 400 - 26.5
SPEAR + Geiping et al. [1] 50 400 100 124.5
Geiping et al. [1] 100 2000 - 32.8
SPEAR + Geiping et al. [1] 100 2000 60 81.5

As we prove theoretically in Sec. 5.2 and verify
practically in App. E.5, in the common regime
where the batch size b is much smaller than
dimensions of the attacked linear layer w.h.p.
the input information is losslessly represented
in the client gradient. However, in practice for
b > 25 the exponential sampling complexity
of SPEAR becomes a bottleneck that prevents
the recovery of the input (see Fig. 4).

In this section, we propose a method for alleviating the exponential sampling complexity by combining
SPEAR with an approximate reconstruction method to get a prior on which submatrices LA satisfy
the conditions of Theorem 3.3, i.e., have corresponding matrices A containing a 0-column. To this
end, we first obtain an estimate of the client pre-activation values Z̃ based on the approximate input
reconstructions from Geiping et al. [1]. As large negative pre-activation values in Z̃ are much more
likely to correspond to negative pre-activation values in the true Z, and, thus, to 0s in gradients
∂L
∂Z , we record the locations of the 3b largest negative values for each column of Z̃. Importantly, by
choosing the locations this way, we ensure that each group of 3b locations correspond to locations of
likely 0s in same column of ∂L

∂Z . Restricting the sampling of the row indices of LA and A only within
each group of locations, ensures that LA is very likely to satisfying the conditions of Theorem 3.3.

We confirm the effectiveness of this approach in a preliminary study, shown in Table 5, that demon-
strates the combined approach allows a substantial increase in the batch size SPEAR can scale
to (up to 100), thus effectively eliminating its exponential complexity. The results show that the
combined approach drastically improves the reconstruction quality of Geiping et al. [1] as well, as
unlike Geiping et al. [1], it achieves exact reconstruction. Importantly, we observe that even for the 4
batches SPEAR failed to recover in Table 5, SPEAR still reconstructs > 97 of the 100 directions qi
correctly, suggesting that future work can further improve upon our results.

6.4 Feature Inversion in Convolutional Neural Networks

Table 6: Comparison between the reconstructions
on VGG16 for Geiping et al. [1], CPA [9], and
SPEAR for 10 IMAGENET batches (b = 16).
Method LPIPS ↓ Feature Sim ↑
Geiping et al. [1] 0.562 -
CPA[9] + FI + Geiping et al. [1] 0.388 0.939
SPEAR + FI + Geiping et al. [1] 0.362 0.984

Following the Cocktail Party Attack (CPA) [9],
we experiment with using SPEAR to recover
the input features to the first linear layer of a pre-
trained VGG16 convolutional network with size
25088×4096 for IMAGENET batches of b = 16
and use them in a feature inversion (FI) attack
to approximately recover the client images. We
show the results of our experiments, based on the CPA’s code and parameters, in Table 6. We see the
inverted features drastically improve quality of the final reconstructions, and that SPEAR achieves
almost perfect feature cosine similarity, resulting in better overall reconstruction versus CPA.

9



7 Related Work

In this section, we discuss how we relate to prior work.

Gradient Inversion Attacks Since gradient inversion attacks have been introduced [3], two settings
have emerged: In the malicious setting, the server does not adhere to the training protocol and can
adversarially engineer network weights that maximize leaked information [19, 20, 21, 22]. In the
strictly harder honest-but-curious setting, the server follows the training protocol but still aims to
reconstruct client data. We target the honest-but-curious setting, where prior work has either recovered
the input exactly for batch sizes of b = 1 [5, 6], or approximately for b > 1 [1, 23, 7, 8, 9]. In this
setting, we are the first to reconstruct inputs exactly for batch sizes b > 1.

Most closely related to our work is Kariyappa et al. [9] which leverage the low-rank structure of the
gradients to frame gradient inversion as a blind source separation problem, improving their approx-
imate reconstructions. In contrast, we derive an explicit low-rank representation and additionally
leverage gradient sparsity reconstruct inputs exactly.

Unlike a long line of prior work, we rely neither on any priors on the data distribution [8, 24, 25, 26]
nor on a reconstructed classification label [1, 27, 7, 23, 8]. This allows our approach to be employed
in a much wider range of settings where neither is available.

Defenses Against Gradient Inversion Defenses based on Differential Privacy [28] add noise
to the computed gradients on the client side, providing provable privacy guarantees at the cost of
significantly reduced utility. Another line of work increases the empirical difficulty of inversion
by increasing the effective batch size, by securely aggregating gradients from multiple clients [29]
or doing multiple gradient update steps locally before sharing an aggregated weight update [4].
Finally, different heuristic defenses such as gradient pruning [3] have been proposed, although their
effectiveness has been questioned [30].

Sparsely-used Dictionary learning Recovering the disaggregation matrix Q is related to the
well-studied problem of sparsely-used dictionary learning. However, there the aim is to find the
sparsest coefficient matrix (corresponding to our ∂L

∂Z ) and dense dictionary (Q−1) approximately
encoding a signal (L). In contrast, we do not search for the sparsest solution yielding an approximate
reconstruction but a solution that exactly induces consistent X and ∂L

∂Z , which happens to be sparse.
Sparsely-used dictionary learning is known to be NP-hard [31] and typically solved approximately
[32, 10, 33]. However, under sufficient sparsity, it can be solved exactly in polynomial time [10].
While our ∂L

∂Z are not sparse enough, we still draw inspiration from Spielman et al. [10] in Sec. 4.

8 Limitations

We focus on recovering the inputs to fully connected layers with ReLU activations such as they occur
at the beginning of fully connected networks or as aggregation layers of many other architectures.
Extending our approach to other layers is an interesting direction for future work.

Further, our approach scales exponentially with batch size b. While SPEAR’s massive parallelizability
and its ability to be combined with optimization-based attacks, as shown in Sec. 6.3, can partially
mitigate the computational complexity, future research is still required to make reconstruction of
batches of size b > 100 practical.

9 Conclusion

We propose SPEAR, the first algorithm permitting batches of b > 1 elements to be recovered exactly
in the honest-but-curious setting. We demonstrate theoretically and empirically that SPEAR succeeds
with high probability and that our highly parallelized GPU implementation is effective across a wide
range of settings, including batches of up to 25 elements and large networks and inputs.

We thereby demonstrate that contrary to prior belief, an exact reconstruction of batches is possible
in the honest-but-curious setting, suggesting that federated learning on ReLU networks might be
inherently more susceptible than previously thought. To still protect client privacy, large effective
batch sizes, obtained, e.g., via secure aggregation across a large number of clients, might prove
instrumental by making reconstruction computationally intractable.
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A Broader Impact

In this work, we demonstrate that contrary to prior belief, an exact reconstruction of batches is
possible in the honest-but-curious setting for federated learning. As our work demonstrates the
susceptibility of federated learning systems using ReLU networks, this work inevitably advances
the capabilities of an adversary. Nonetheless, we believe this to be an important step in accurately
assessing the risks and utilities of federated learning systems.

To still protect client privacy, large effective batch sizes, obtained, e.g., via secure aggregation
across a large number of clients, might prove instrumental by making reconstruction computationally
intractable. As gradient information and network states can be stored practically indefinitely, our
work highlights the importance of proactively protecting client privacy in federated learning not only
against current but future attacks. This underlines the importance of related work on provable privacy
guarantees obtained via differential privacy.

B Deferred Proofs

Theorem 3.1. The network’s gradient w.r.t. the weights W can be represented as the matrix product:

∂L
∂W

=
∂L
∂Z

XT . (1)

Proof. We will use Einstein notation for this proof:
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We note that δ i
k is the Kronecker delta, that is δ i

k = 1 if k = i and 0 otherwise. Further, δl = 1 for
all l. Hence we arrive at Eq. 1.

Lemma B.1. Let b, n,m ∈ N such that b < n,m. Further, let A,L ∈ Rm×b and B,R ∈ Rb×n be
matrices of maximal rank, satisfying AB = LR. Then there exists a unique disaggregation matrix
Q ∈ GLb(R) s.t. A = LQ, and B = Q−1R.

Proof. As b ≤ n,m and the matrices A ∈ Rm×b and B ∈ Rb×n have full rank, we know that there
exists

• a left inverse A−L ∈ Rb×m for A: A−LA = Ib and

• a right inverse B−R ∈ Rn×b for B: BB−R = Ib.

Thus, it follows from
A−LLRB−R = A−LABB−R = Ib,

that (A−LL)−1 = RB−R. We now set Q = RB−R.
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This Q satisfies the required properties:

• B = Q−1R:
Q−1R = A−LLR = A−LAB = B,

• A = LQ:
LQ = LRB−R = ABB−R = A,

• Uniqueness: Assume we have Q1 and Q2 that satisfy LQ1 = LQ2 = A. As L is of rank
b and b ≤ m, there exists a left inverse L−L for L: L−LL = Ib. Applying this left inverse
to LQ1 = LQ2, directly yields Q1 = Q2, and hence we get uniqueness.

Theorem 3.4. The gradient w.r.t. the bias b can be written in the form ∂L
∂b = ∂L

∂Z

[
1...
1

]
.

Proof. We use again Einstein notation.
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This concludes the proof.

Theorem 3.5. For any left inverse L−L of L, we have
[ s1...

sb

]
= Q−1L−L ∂L

∂b

Proof. The proof is straight forward. Using Theorem 3.4 and Theorem 3.2, we know that

Q−1L−L ∂L
∂b

= Q−1L−L ∂L
∂Z

[
1...
1

]
= Q−1L−LLQ

[
1...
1

]
= Q−1Q

[
1...
1

]
= Q−1Qdiag(s1, . . . , sb)

[
1...
1

]
=

[ s1...
sb

]
.

Lemma 5.1. Let A ∈ Rb−1×b be submatrix of the gradient ∂L
∂Z obtained by sampling b − 1

rows uniformly at random without replacement, where each element of ∂L
∂Z is distributed i.i.d. as

∂L
∂Zj,k

= ζ|ϵ| with ϵ ∼ N (µ = 0, σ2 > 0) and ζ ∼ Bernoulli(p = 1
2 ). We then have the probability

q of A having exactly one all-zero column and being full rank lower bounded by:

q ≥ b

2b−1

(
1− ( 12 + ob−1(1))

b−1
)
≥ b

2b−1
(1− 0.939b−1).
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Proof. We have the probability of one of the b columns being all zero as b
2b−1 if the network has full

rank, all other columns will not be all-zero.

Further, we have the probability of the submatrix 1A>0 being full rank conditioned on column i
being all-zero as the probability of the matrix described by remaining b − 1 columns being non-
singular. This probability is 1− ( 12 + ob−1(1))

b−1 [11] where limb→∞ ob−1(1) = 0, which can be
lower-bounded with 1− 0.939b−1 [34]. We thus obtain their joint probability as their product.

Lemma 5.2. Assuming i.i.d. submatrices A following the distribution outlined in Lemma 5.1 and
using Alg. 1, we have the expected number of submatrices n∗

total required to recover all b correct
direction vectors as:

n∗
total =

1

q

b−1∑
k=0

b

b− k
=

bHb

q
≈ 1

q
(b log(b) + γb+ 1

2 ),

where Hb is the bth harmonic number and γ ≈ 0.57722 the Euler-Mascheroni constant.

Proof. As we sample submatrices A uniformly at random with replacement, assuming them to be
i.i.d. is well justified for the regime of m ≫ b. The the number n of submatrices drawn between
correct direction vectors qi thus follows a Geometric distribution P[n = k] = q(1 − q)k−1 with
success probability q with expectation n∗ = E[n] = 1

q . As we draw correct direction vectors qi

uniformly at random from the b columns of Q, we have the probability of drawing a new direction
vector qi as b−k

b for k already drawn direction vectors. Again via the expectation of the Geometric
distribution we obtain the expected number c∗ of correct direction vectors we have to draw until we
have recovered all b distinct ones as the solution of the Coupon Collector Problem c∗ =

∑b−1
k=0

b
b−k =

bHb ≈ b log(b) + γb+ 1
2 . The proof concludes with the linearity of expectation.

Maximum Number of Samples Required with High Probability We now compute the number
of samples np

total required to recover all b correct directions with high probability 1− p.
Lemma B.2. In the same setting as Lemma 5.2, we have an upper bound np

total on the number of
submatrices we need to sample until we have recovered all b correct direction vectors by solving the
following quadratic inequality for np

total

p

2
≤ Φ

(
b log(2b/p∗)− np

totalq√
np

totalq(1− q)

)
,

where Φ is the cumulative distribution function of the standard normal distribution and p∗ =
p− 1 + (1− pfr)

b.

Proof. At a high level, bound the number of valid directions cp we need to discover until we recover
all b distinct ones and then the number of submatrices np

total we need to sample to obtain these cp

directions, each with probability 1− p
2 , before applying the union bound.

However, we first note that with probability 1 − (1 − pfr)
b we will (repeatedly) reject a correct

direction due to a lack of induced sparsity and thus fail irrespective of the number of samples we
draw. We thus correct our failure probability budget from p to p∗ = p− 1 + (1− pfr)

b, using the
union bound.

We now show how to compute the upper bound on the number of correct directions cp we need to find
until we have found all b distinct directions. To this end, we bound the probability of not sampling
the ith direction qi after finding c candidates as p¬i = (1 − 1

b )
c ≤ e−

c
b . We can then bound the

probability of missing any of the b directions using the union bound as p¬all ≤
∑b

i=1 p¬i = be−
cp

b .
We thus obtain the minimum number cp of correct directions to find all b distinct ones with probability
at least p∗

2 as cp ≥ b log(2b/p∗).

We can now compute the number np
total of samples required to find cp submatrices satisfying the

condition of Theorem 3.3 for some i with probability 1− p
2 . To this end, we approximate the Binomial

distribution B(n, q) with the normal distribution N (nq, nq(1− q)) [35], which is generally precise
if min(nq, n(q − 1)) > 9 [36], which holds for b ≥ 5. We thus obtain the number of samples np

total
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required to find cp valid directions with high probability 1− p∗

2 by solving p∗

2 = Φ(
cp−np

totalq√
np

totalq(1−q)
) for

np
total which boils down to a quadratic equation.

By the union bound, we have that the total failure probability of not finding all b correct directions is
at most p.

For a batch size of b = 10 and p = 10−8, we, e.g., obtain n ≈ 4× 104.

Lemma 5.3. Under the same assumptions as in Lemma 5.1, we have an upper bound on the failure
probability pub

fail of Alg. 1 even when sampling exhaustively as:

pub
fail ≤ b

(
1−

m∑
k=b−1

(
m

k

)
1

2m

(
1− 0.939(b−1)( k

b−1)
))

+ 1− (1− pfr)
b,

where pfr is the probability of falsely rejecting a correct direction qqq′ via our sparsity filter (Sec. 4.1).

Proof. We will first compute the probability of ∂L
∂Z not containing a submatrix A satisfying the

conditions of Theorem 3.3 for all i ∈ {1, . . . , b} and then the probability of us failing to discover it
despite exhaustive sampling.

We observe that the number k of rows in ∂L
∂Z with a zero ith entry is binomially distributed with success

probability 1
2 . For each k ≥ b− 1, we can construct

(
k

b−1

)
submatrices A with an all-zero ith column.

The probability of any such submatrix having full rank is 1 − ( 12 − ob−1(1))
b−1 > 1 − 0.939b−1

[11, 34].

We thus have the probability of ∂L
∂Z containing at least one submatrix A with full rank and an all-zero

ith column as
∑m

k=b−1

(
m
k

)
1
2m

(
1− 0.939(b−1)( k

b−1)
)

.

Using the union bound, we thus obtain an upper bound on the probability of ∂L
∂Z not containing any

submatrix A with full rank and an all-zero ith column for all i ∈ {1, . . . , b}.
To compute the probability of us failing to discover an existing submatrix despite exhaustive sampling,
we first note that we have the probability pfr of an arbitrary column in ∂L

∂Z being less sparse than our
threshold τ . Thus, with probability 1− (1− pfr)

b we will discard at least one correct direction due
to it inducing an unusually dense column in ∂L

∂Z .

We now obtain the overall failure probability via the union bound.

C Deferred Algorithms

Here, we present the Algorithms COMPUTELAMBDA and GREEDYFILTER referenced in Sec. 5.1.

Algorithm 2 COMPUTELAMBDA

1: function COMPUTELAMBDA(L,R,W , b, ∂L
∂b ,B)

2: Q← FIXSCALE (B,L, ∂L
∂b )

3: ∂L
∂Z ← L ·Q

4: XT ← Q−1 ·R
5: Z = W ·X + (b| . . . |b)
6: λ− ←

∑
i,j 1[Zi,j ≤ 0] · 1[ ∂L

∂Zi,j
= 0]

7: λ+ ←
∑

i,j 1[Zi,j > 0] · 1[ ∂L
∂Zi,j

̸= 0]

8: λ← λ−+λ+

m·b
9: return λ
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Algorithm 3 GREEDYFILT

1: function GREEDYFILTER(L,R,W , b, ∂L
∂b , C)

2: B ← {}
3: while rank of B is B do
4: Select the sparsest vector q′

i from C \ B
5: B ← B ∪ {q′

i}
6: if B is not of full rank then
7: B ← B \ {q′

i}
8: end if
9: end while

10:
11: λ← COMPUTELAMBDA (L,R,W , b, ∂L

∂b ,B)
12: while not changed do
13: changed← False
14: for (q′

i, q
′
j) in B × (C \ B) do

15: B′ ← B \ {q′
i} ∪ {q′

j}
16: λ′ ← COMPUTELAMBDA (L,R,W , b, ∂L

∂b ,B′)
17: if λ′ > λ then
18: B ← B′
19: λ← λ′

20: changed← True
21: end if
22: end for
23: end while
24: Q← FIXSCALE (B,L, ∂L

∂b )

25: XT ← Q−1 ·R
26: return λ, X

Table 7: Reconstruction quality across 100 batches.

Dataset PSNR ↑ LPIPS ↓ Acc (%) ↑ Time/Batch

MNIST 99.1± 13.2 NaN 99 2.6 min
CIFAR-10 106.6± 15.1 1.16×10−5 ± 2.26×10−4 99 1.7 min
TINYIMAGENET 110.7± 12.8 1.62×10−4 ± 3.22×10−3 99 1.4 min
IMAGENET 224× 224 125.4± 11.2 1.05×10−5 ± 9.50×10−4 99 2.1 min
IMAGENET 720× 720 125.6± 8.1 8.08×10−11 ± 3.05×10−3 99 2.6 min

D Dataset Licenses

In this work, we use the commonly used MNIST [13], CIFAR-10 [14], TINYIMAGENET [15] and
IMAGENET [16] image datasets. No information regarding licensing has been provided on their
respective websites. Further, we use Adult tabular dataset under the Creative Commons Attribution
4.0 International (CC BY 4.0) license.

E Deferred Experiments

E.1 Main Results with Error Bars

In this section, we provide the results from our main experiment in Table 3, alongside 95% confidence
intervals.

E.2 Experiments on Label-Heterogeneous Data

In this section, we provide experiments on heterogeneous client data. In particular, we look at
the extreme case where each client has data only from a single class. As label repetition makes
optimization-based attacks harder [1, 23, 7], the results presented in Table 8 for the TinyImageNet
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Figure 6: Effect of the second stage of our reconstruction algorithm discussed in Sec. 4.2, depending
on the batch size b.

dataset show another advantage of our algorithm, namely, SPEAR works regardless of the label
distribution, providing even better reconstruction results compared to Table 3 for single-label batches.

Table 8: Mean reconstruction quality metrics across 100 batches for batches only containing samples
from only one class in the same setting as Table 3.

Dataset PSNR ↑ SSIM ↑ MSE ↓ LPIPS ↓ Acc (%) ↑
TINYIMGNET 127.7 0.999717 4.80×10−6 10.36×10−5 98

E.3 Effectivness of our 2-Stage Greedy Algorithm

In this section, we compare reconstruction success rate (accuracy) with and without the second stage
of our greedy algorithm discussed in Sec. 4.2 in Fig. 6. We observe that the second stage filtering
becomes increasingly important for larger batch size b.

E.4 Effect of Training on SPEAR

(a) Training Set (b) Test Set

Figure 7: Effect of training (on MNIST) on the effectiveness of SPEAR at a batch size of b = 10
evaluated on the MNIST training (a) and test (b) sets.

In this section, we demonstrate how training effects SPEAR’s performance. To this end, we train
a network on MNIST and evaluate SPEAR periodically during training both on the train and test
datasets, visualizing results in Fig. 7. We observe that SPEAR performance is very similar between
the two datasets we evaluate on. Further, we see that SPEAR performs very well on trained networks,
with the number of required steps by the algorithm being even lower those those on untrained
networks. However, if the minimum column sparsity of ∂L

∂Z drops significantly, as is the case for the
checkpoints around 1000 training steps in the illustrated run. SPEAR’s performance drops slightly.
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E.5 Failure Probabilities

In this section, we validate experimentally our theoretical results on SPEAR’s failure rate for several
batch sizes b (Lemma 5.3). As this requires exhaustive sampling of all

(
m
b−1

)
submatrices of L we

only consider small batch sizes b ≤ 10 and networks m ≤ 40. We show the results in Fig. 8 where
we observe that the empirical failure probability (blue) with 95% Clopper-Pearson confidence bounds
generally agrees with the analytical approximation (solid line) and always lies below the analytical
upper bound (dashed line). We conclude that in most settings, the number of required samples rather
than complete failure is the limiting factor for SPEAR’s performance.

3 20 40
Layer Width m

0.0

0.5

1.0

Failure Probability

(a) b = 2

5 20 40
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(b) b = 4
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(d) b = 8

Figure 8: Empirical failure probability (blue) with 95% Clopper-Pearson confidence bounds (shaded
blue) compared to the analytical upper bound (dashed line) and approximation (solid line) of the
failure probability for different batch sizes b.

E.6 Results under DPSGD

In this section, we show experimental results on reconstructing images from gradients defended using
DP-SGD [28]. In Table 9, we report results on the TINYIMAGENET dataset, b = 20, with noise levels
σ ≤ 1.0×10−4 and gradient clipping that constrains the ℓ2 norm of the composite gradient vector,
combining the gradients of all layers, to a maximum value of C ∈ [1, 2]. We chose the maximum
value σ to be close to median gradient magnitude of the first linear layer which in our experiments
was also ≈ 1.0×10−4. We chose the range for C such that for the upper bound 2, most individual
input gradients are not clipped, while for the lower bound 1 almost all are.

Adapting SPEAR to Noisy Gradients In the experiments presented in Table 9, we make several
adjustments to SPEAR to better handle the noise added by DPSGD. First, we apply looser thresholds
in our sparsity filtering at Line 6 in Alg. 1 to account for the noise added to the sparse entries of
∂L
∂Z . To account for the imperfect reconstructions in this setting, we also perform our early stopping
(Line 9 in Alg. 1) when the sparsity matching coefficient γ reaches a lower value than 1. Further,
we sample matrices LA of larger size (b+ 1× b) to increase the numerical stability of our solutions
under noise. While sampling larger LA is more computationally expensive, as b+ 1 instead of b− 1
entries in A are required to be correctly sampled as 0, the resulting directions qi are more numerically
stable as they are obtained as a solution of an overdetermined system of linear equations. Note that if
A is assumed to be of rank b− 1, Theorem 3.3 remains valid for these larger matrices LA. Finally,
due to our looser sparsity filtering described above we encounter more incorrect directions qi. We
tackle this issue by only keeping qi that correspond to matrices LA of rank exactly b− 1. Under our
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assumption in Theorem 3.3, those are exactly the vectors qi that correspond to A of the correct rank
b− 1. Note that we apply these changes only for σ > 0.

Invariance to Gradient Clipping In Table 9, we observe that the quality of our reconstructions is
not affected by the clipping constant C. This is not a coincidence, but rather a mathematical fact. To
see this, note that the observed gradients w.r.t. W under clipping are given by:

˙∂L
∂W

=

b∑
i=1

ci
∂L
∂Wi

=

b∑
i=1

ci
∂L
∂Zi

Xi,

where ci ∈ R are the unknown to the attacker factors applied by the clipping procedure to each
individual input gradient ∂L

∂Wi
. One can adapt the proof to Theorem 3.1, to show that ˙∂L

∂W = ˙∂L
∂ZXT ,

where we define ˙∂L
∂Zi

to be the clipped gradient w.r.t Z, consisting of the columns ˙∂L
∂Zi

= ci
∂L
∂Zi

.
We also observe that one can adapt Theorem 3.4 to work directly on the clipped gradients as well,

resulting in the formula ˙∂L
∂b = ˙∂L

∂Z

[
1...
1

]
for the clipped gradient w.r.t. b. The formula follows from the

observation that in our setting the same clipping factor ci is applied to the gradients of each layer,
including ∂L

∂bi
and ∂L

∂Wi
. By applying the rest of the theoretical results of the paper without change but

on clipped gradients ˙∂L
∂Z , instead of the original unclipped gradients ∂L

∂Z , we conclude that SPEAR is
directly applicable on the clipped client gradient and that applying it on those still recover the true
input matrix X without the need of knowing the clipping constants ci.

Robustness to Noise From Table 9, we observe that SPEAR is very robust to noise. We emphasize
in particular that even when noise of similar size to the size of the gradients in expectation is applied,
we still obtain a reconstruction with PSNR > 28. This is similar to the PSNR of 29.3 that Geiping
et al. [1] achieves *without any noise* which is commonly considered unacceptable information
leakage. These experiments suggest that to efficiently defend against SPEAR using noise, one needs
to apply such high magnitudes that training will likely be significantly impeded.

F SPEAR under FedAvg Updates

In this section, we first demonstrate theoretically that SPEAR can be generalized to attack FedAvg [4]
client updates, and then present empirical results confirming that SPEAR is indeed very effective
under FedAvg protocols with different number of epochs E , local client learning rates η, and, even
works, when mini-batches of size bmini are used.

Generalizing SPEAR to FedAvg Updates Assuming that a client uses all of its data points, X , in
each local gradient step of the FedAvg protocol, i.e. bmini = b, the client computes and subsequently
shares with the server the following updated linear layer weights:

W E = W 0 − η

E∑
e=1

∂L
∂W e

= W 0 − η

E∑
e=1

∂L
∂Ze

·XT = W 0 − η

( E∑
e=1

∂L
∂Ze

)
·XT ,

where W 0 is the global model sent by the server, W e represent the local client weights after e client
epochs, and ∂L

∂W e and ∂L
∂Ze are the weight and output gradients at epoch e.

We empirically observe that sparsity patterns of the different local gradients ∂L
∂Ze are usually similar.

This is expected as these patterns correspond to the ReLU activation patterns for the layer outputs
Ze (see Sec. 3.2) at different local steps which are computed on the same data X and with similar
weights W e. As the sparsity patterns for the individual gradients are similar, their sum

∑E
e=1

∂L
∂Ze

also shares this sparsity pattern and is, thus, also sparse. As the server knows W 0 and it can subtract
it from the client’s shared weights W E and apply Theorem 3.3, as before, on the sparse matrix∑E

e=1
∂L
∂Ze to obtain the corresponding matrix Q and client data X . We note that while our sparsity

matching coefficient σ will typically not reach 1 for the final reconstruction in this setting, as there is
some mismatch between the sparsity patterns of the different output gradients ∂L

∂Ze , we have found
that SPEAR remains practically effective regardless.
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Table 9: Reconstruction quality across 100 batches of size b = 20 computed on TINYIMAGENET for
gradients computed with DPSGD [28] with different noise levels σ and gradient clipping levels C.

Method C σ PSNR ↑ Acc (%) ↑
Geiping et. al [1] 0.00 0 29.3 100

SPEAR (Ours) 1.00 0 118.2 100
SPEAR (Ours) 1.25 0 118.1 100
SPEAR (Ours) 1.50 0 118.5 100
SPEAR (Ours) 1.75 0 118.7 100
SPEAR (Ours) 2.00 0 118.0 100

SPEAR (Ours) 1.00 5.0×10−6 38.6 99
SPEAR (Ours) 1.25 5.0×10−6 40.4 98
SPEAR (Ours) 1.50 5.0×10−6 41.9 98
SPEAR (Ours) 1.75 5.0×10−6 42.2 97
SPEAR (Ours) 2.00 5.0×10−6 42.0 96

SPEAR (Ours) 1.00 1.0×10−5 38.2 99
SPEAR (Ours) 1.25 1.0×10−5 40.0 98
SPEAR (Ours) 1.50 1.0×10−5 38.5 99
SPEAR (Ours) 1.75 1.0×10−5 39.2 99
SPEAR (Ours) 2.00 1.0×10−5 39.6 99

SPEAR (Ours) 1.00 5.0×10−5 32.3 97
SPEAR (Ours) 1.25 5.0×10−5 33.5 98
SPEAR (Ours) 1.50 5.0×10−5 34.4 99
SPEAR (Ours) 1.75 5.0×10−5 34.6 100
SPEAR (Ours) 2.00 5.0×10−5 34.1 100

SPEAR (Ours) 1.00 1.0×10−4 29.7 98
SPEAR (Ours) 1.25 1.0×10−4 29.3 97
SPEAR (Ours) 1.50 1.0×10−4 29.9 99
SPEAR (Ours) 1.75 1.0×10−4 29.4 98
SPEAR (Ours) 2.00 1.0×10−4 28.7 95

We note that SPEAR can be even be generalized to FedAvg protocols that use random mini-batches
Xe of size bmini < b sampled from X at each local step. This is the case, as each local client gradient
∂L

∂W e = ∂L
∂Ze (X

e)T , can be represented as ∂L
∂ZeX

T , where ∂L
∂Ze is derived from ∂L

∂Ze by adding 0

columns at batch positions corresponding to batch elements not in Xe. Importantly, as ∂L
∂Ze only

adds 0 columns to ∂L
∂Ze , the sparsity of ∂L

∂Ze can only increase, allowing to conclude that
∑E

e=1
∂L
∂Ze

remains sparse, and, thus, Theorem 3.3 can still be applied to it.

Experiments with FedAvg Updates Next, we show empirically the effectiveness of SPEAR for
FedAvg updates. In Table 10, we show the results of attacking clients with b = 20 datapoints from
the TINYIMAGENET dataset for different number of local client epochs E . We observe that even for
E = 50 gradient steps we recover data from most batches, with quality similar to the quality achieved
when attacking individual gradients. This is expected as Theorem 3.3 still holds, as described in the
previous paragraph. The slight dip in the fraction of reconstructed batches for larger number of steps
E can be attributed to some client batches inducing larger discrepancy between the sparsity patterns
of ∂L

∂Ze compared to others, resulting in their sum being much less sparse. Further, Table 10 also
shows that SPEAR can attack client updates that take b/bmini = 4 local steps per epoch for E = 20
epochs. Interestingly, while a total of 80 gradient steps are taken in this scenario the results are closer
to the bmini = 20, E = 20 setting, instead of the bmini = 20, E = 50 setting. This can be explained by
the increased sparsity of the individual expanded gradients ∂L

∂Ze .

Finally, we experiment with different local client learning rates η and show the results in Table 11.
We observe that even for large learning rates SPEAR still recovers its inputs well, showing that while
the individual weights W e can change a lot, their induced sparsity on ∂L

∂Ze remains consistent.

G Additional Visualisations

In this section we present additional visualisations of the reconstructions obtained by SPEAR. First,
in Fig. 9 we show an extended comparison between the images recovered by our method and Geiping
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Table 10: Reconstruction quality across 100 FedAvg client updates computed on TINYIMAGENET
batches of size b = 20 for different number of epochs E and different mini batch sizes bmini.

η E bmini PSNR ↑ Acc (%) ↑
0.01 1 20 97.8 97
0.01 5 20 103.9 100
0.01 10 20 106.7 99
0.01 20 20 108.90 98
0.01 50 20 104.9 90
0.01 20 5 106.7 97

Table 11: Reconstruction quality across 100 FedAvg client updates computed on TINYIMAGENET
batches of size b = 20 for different local client learning rates η.

η E bmini PSNR ↑ Acc (%) ↑
0.1 5 20 119.3 95
0.01 5 20 103.9 100
0.001 5 20 85.5 100
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(SPEAR – ours)

Approximate Recon.
[1]

Original Image

Exact Reconstruction
(SPEAR – ours)

Approximate Recon.
[1]

Original Image

Figure 9: The reconstructions of all images from Fig. 1, reconstructed using our SPEAR (top) or the
prior state-of-the-art Geiping et al. [1] (mid), compared to the ground truth (bottom).

et al. [1] on the TINYIMAGENET batch first shown in Fig. 1. In Fig. 9 we operate in the same
setting as Table 8, namely batches of only a single class. We observe that while some images are
reconstructed well by Geiping et al. [1], most of the images are of poor visual quality, with some even
being hard to recognize. In contrast, all of our reconstructions are pixel perfect. This in particular also
means, that SPEAR’s reconstructions improve in fine-detail recovery even upon the well recovered
images of Geiping et al. [1]. This is expected as our attack is exact (up numerical errors).

Further, to show the results in Fig. 9 are representative, in Fig. 10–12 we provide additional visualiza-
tions of the reconstructions obtained by SPEAR corresponding to the 10th,50th, and 90th percentiles
of the PSNRs obtained in the TINYIMAGENET experiment reported in Table 3. We observe that
only 1 sample has visual artefacts for the 10th percentile batch (top left image in Fig. 10) and that
the 50th and 90th percentile batches contain only perfect reconstructions. We theoreticize that the
visual artefact in Fig. 10 is a result of a numerical instability issue and that using LA of bigger size as
described in App. E.6 one could further alleviate it in exchange of additional computation.

Finally, we demonstrate what happens to SPEAR reconstructions in the rare case when the algorithm
fails to recover all correct directions qi from the batch gradient. In Fig. 13, we show the only such
batch for the TINYIMAGENET experiment reported in Table 3. The batch has 2 wrong directions and
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still achieves an average PSNR of 91.2 (the worst PSNR obtained in this experiment), which is still
much higher compared to prior work. Further, all but 2 images are affected by the failure.

Exact Reconstruction
(SPEAR – ours)

Original Image

Exact Reconstruction
(SPEAR – ours)

Original Image

Figure 10: Visualisation of the images reconstructed by SPEAR from the batch whose PSNR is at
the 10th percentile based on the set of 100 TINYIMAGENET reconstructions reported in Table 3.
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Figure 11: Visualisation of the images reconstructed by SPEAR from the batch whose PSNR is at
the 50th percentile based on the set of 100 TINYIMAGENET reconstructions reported in Table 3.
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Figure 12: Visualisation of the images reconstructed by SPEAR from the batch whose PSNR is at
the 90th percentile based on the set of 100 TINYIMAGENET reconstructions reported in Table 3.
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Figure 13: Visualisation of the images reconstructed by SPEAR from the only batch from the 100
TINYIMAGENET reconstructions reported in Table 3, where not all recovered directions q′i are correct.
SPEAR recovered 2/20 wrong directions, resulting in the left most images being wrongly recovered.
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