
Provably Robust Adversarial Examples Dimitar I. Dimitrov, Gagandeep Singh, Timon Gehr, Martin Vechev

Single adversarial attacks Robust adversarial regions

Problem setting

- Traditionally, robustness of X_{oria} is assessed by generating **individual** attacks \mathbf{X}_1 and \mathbf{X}_2 within a ball around it (in red).
- Description of the **whole** adversarial region (in green) is preferable. The region can contain **trillions** of adversarial images.

Single adversarial attacks vs Adversarial regions

Single attacks:

- Easy to generate
- Less informative

Adversarial regions:

- More Informative
- individual attack

Key idea: Use single attacks to generate initial region and **refine** it until provably verifiable.

Algorithm overview

I. Use **PGD** to generate many individual attacks. Fit a **hyperbox** around them to restrain search region. The region is shown in blue.

I. Use the overapproximation box to initialize. At each step use black box verification tool based on convex-relaxations to generate a half-space constraint which if added to the current box makes the resulting region verifiably adversarial. Adjust the constraints' **bias** such that a part of the box is removed but the constraint is **weaker**. Create **maximal box not intersecting** the adjusted constraint. Repeat until verification succeeds. Results in **hyperbox robust example**. The region is shown in purple.

III. Initialize with the overapproximation box. At each step use **black** box verification tool to generate half-space constraints that force the ReLU neurons to become **decided** and for the verification objective to become **positive**. **Bias-adjust** them so they **do not intersect** the underapproximation box region. This **enforces** the polyhedral region to be **larger** than the hyperbox example. Repeat until verification. Results in polyhedral robust example. The region is shown in red.

• **PARADE** produces adversarial regions for all but one adversarial

26

CIFAR10 CONVSML 0.006

CIFAR10 CONVBIG 0.008 60 25 36

- image.
- Regions generated by **PARADE** are much larger than uniform shrinking baseline.
- **PARADE** hyperbox example generation is **2x** faster than the uniform shrinking baseline.

Monare Research

Department of Computer Science UNIVERSITY OF

______ 2. Generate an overapproximation Ν box from samples Y 0 \mathbf{O} O ple 0X Adjust the target hyperplane's bias and shrink box accordingly J 0 \mathcal{O} \mathbf{O} ra Φ Repeat until the polyhedr region is verifiable PARADE POLY PARADE BOX

	1	INADE	DUA	TARADETOLI				
SIZE	#VER TIME		SIZE	#VER	TIME	SIZEO		
0^{24}	53	114 s	10^{121}	53	1556 s	$< 10^{191}$		
339	32	74 s	10^{494}	32	141 s	$< 10^{561}$		
10^{9}	28	880 s	10^{137}	28	5636 s	$< 10^{173}$		
360	44		10486	44	264 s	$< 10^{543}$		
380	36	404 s	10^{573}	36	610 s	$< 10^{654}$		

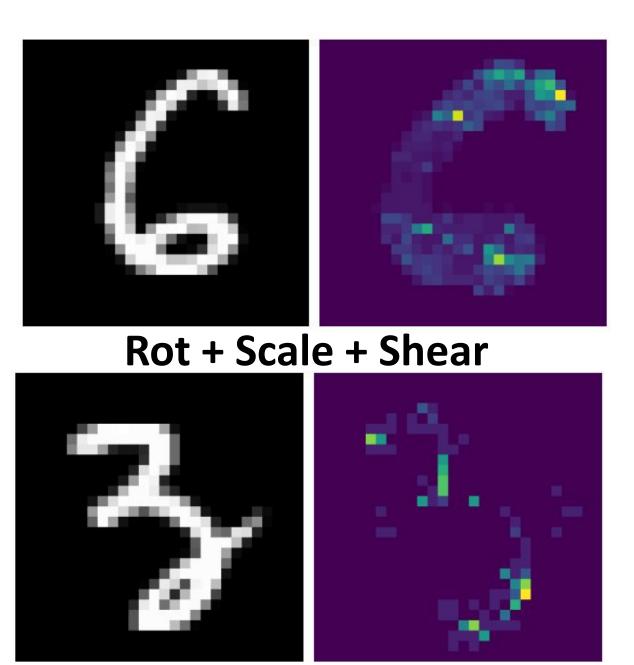
• **PARADE** regions contain up to **10**⁵⁷³ individual adversarial images.

Experimental evaluation

Robust adversarial examples to geometric perturbations

NETWORK	TRANSFORM	#Cor	#IMG	#REG	BASELINE			PARADE				
					#VER	TIME	#SPLITS	#VER	Time	#SPLITS	UNDER	OVER
MNIST CONVSML	R(17) SC(18) SH(0.03)	99	38	54	10	890 s	2x5x2	51	774 s	1x2x1	$> 10^{96}$	$< 10^{195}$
	Sc(20) T(-1.7,1.7,-1.7,1.7)	99	32	56	5	682 s	4x3x3	51	521 s	2x1x1	$> 10^{71}$	$< 10^{160}$
	SC(20) R(13) B(10, 0.05)	99	33	48	2	420 s	3x2x2x2	40	370 s	2x1x1x1	$> 10^{70}$	$< 10^{455}$
MNIST ConvBig	R(10) SC(15) SH(0.03)	95	40	50	9	812 s	2x4x2	44	835 s	1x2x1	$> 10^{77}$	$< 10^{205}$
	SC(20) T(0,1,0,1)	95	34	46	2	435 s	4x2x2	42	441 s	2x1x1	$> 10^{64}$	$< 10^{174}$
	SC(15) R(9) B(5, 0.05)	95	39	52	2	801 s	3x2x2x2	46	537 s	2x1x1x1	$> 10^{119}$	$< 10^{545}$
CIFAR CONVSML	R(2.5) SC(10) SH(0.02)	53	24	29	1	1829 s	5x2x2	29	1369 s	2x1x1	$> 10^{599}$	$< 10^{1173}$
	SC(10) T(0,1,0,1)	53	28	32	1	1489 s	4x3x3	32	954 s	2x1x1	$> 10^{66}$	$< 10^{174}$
	Sc(5) R(8) B(1, 0.01)	53	21	25	1	2189 s	5x2x2x2	21	1481 s	2x1x1x1	$> 10^{513}$	$< 10^{2187}$

Robust adversarial examples and Randomized Smoothing


		MNIST	CIFAR		
Method	8x200	CONVSML	CONVBIG	CONVSML	ConvBig
BASELINE PARADE Ind att mean Ind att 95% perc	0.55 1.00 0.29 0.53	0.38 1.00 0.16 0.44	0.59 1.00 0.18 0.51	0.53 1.00 0.48 0.61	0.26 1.00 0.25 0.37

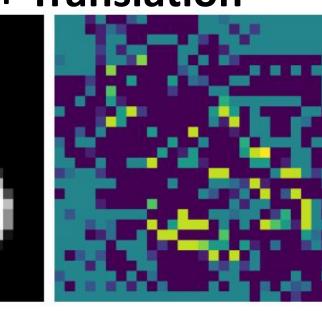
• **PARADE** produces regions that are more robust (have **bigger robust radius** verified using **smoothing**) compared to uniform shrinking and individual attacks used during **Step I** of the algorithm.

Empirically vs Provably robust adversarial examples

- incur very low EoT scores.
- regions: 44 vs 24.

Visualisation of Robust Adversarial Examples

Scale + Rot + Brightness


Department of Computer Science ETHZürich

• **PARADE** can handle diverse combinations of geometric perturbations, as it relies on DeepG in a **black-box** way. • In similar time, **PARADE** generates more verifiable regions containing **more images** compared to baseline based on splitting.

 Empirical examples can exhibit high Expectation-Over-Transformation (EoT), while their **subregions** close to the original attacked point

• Empirically robust adversarial example techniques recovered less

Scale + Translation

 \mathcal{L}_{∞} -adversarial examples