Boosting Robustness Certification of Neural Networks

Gagandeep Singh, Timon Gehr, Markus Püschel, and Martin Vechev Department of Computer Science, ETH Zurich

Problem:

Certification of neural network robustness

Precise but often do not scale

Further reading on efficient abstract interpretation: elina.ethz.ch [a] Making Numerical Program Analysis Fast, PLDI'I 5 [b] Fast Polyhedra Abstract Domain, POPL'17

Solvers for computing refined bounds

After affine transformation in every feedforward layer (except the first):

- select neurons that can take positive values as candidates for refinement
- compute refined lower and upper bounds for the candidates using solvers
- solver instances are encoded as either MILP [2] or LP via DeepZ bounds

 $l'_8 := \min x_8$ $l'_{8} := min \; x_{8}$ $s.t.: x_8 = x_5 - x_6 - 1,$ $s.t.: x_8 = x_5 - x_6 - 1,$ $0 \le x_5 \le \frac{\mathbf{u_3}}{\mathbf{u_3} - \mathbf{l_3}} \cdot x_3 - \frac{\mathbf{l_3} \cdot \mathbf{u_3}}{\mathbf{u_3} - \mathbf{l_3}},$ $0 \le x_5 \le x_3 - \mathbf{l_3} \cdot (1 - a_3),$ $0 \le x_6 \le x_4 - \mathbf{l_4} \cdot (1 - a_4),$ $0 \le x_6 \le \frac{\mathbf{u_4}}{\mathbf{u_4} - \mathbf{l_4}} \cdot x_4 - \frac{\mathbf{l_4} \cdot \mathbf{u_4}}{\mathbf{u_4} - \mathbf{l_4}},$ $x_3 \le x_5 \le \mathbf{u_3} \cdot a_3, x_4 \le x_6 \le \mathbf{u_4} \cdot a_4,$ $x_3 = x_1 + x_2, x_4 = x_1 - x_2,$ $x_3 \le x_5, x_4 \le x_6$ $0 \le x_1 \le 1, 0 \le x_2 \le 1,$ $x_3 = x_1 + x_2, x_4 = x_1 - x_2,$ $a_3, a_4 \in \{0, 1\}.$ $0 \le x_1 \le 1, 0 \le x_2 \le 1.$ MILP formulation LP formulation

Our refined ReLU transformer

ReLU transformers, computing an affine form. Here, l_x , u_x are the original bounds, whereas l'_x , u'_x are the refined bounds. The slope of the two nonvertical parallel blue lines is $\lambda = u_x/(u_x - l_x)$ and the slope of the two nonvertical parallel green lines is $\lambda' = u'_x/(u'_x - l'_x)$. The blue parallelogram is for computing the output affine form in DeepZ, whereas the green parallelogram is for computing the output of the refined ReLU transformer considered in this work.

RefineZono:

Our system for neural network robustness

Our approach on the toy network

End to end implementation

- Anytime relaxation
- refine θ fraction of neurons in a layer with a timeout T for the solver
- refine $\delta \in [0, 1 \theta]$ with a timeout of $\beta . \overline{T}$
- \overline{T} is the average time for refining θ fraction of neurons
- Neuron selection heuristic for θ fraction
- neurons are sorted by width and the sum of absolute output weights • ranks of neurons in both orders are added
- θ fraction of neurons with the smallest rank sum are selected
- Refine k_{MILP} layers with MILP and k_{LP} layers with LP
- Implementation is publicly available at <u>safeai.ethz.ch</u> as part of ERAN

Neural networks

Dataset	Model	Туре	#Neurons	#Layers	Defense
MNIST	3 × 5 0	feedforward	160	3	None
	5×100	feedforward	510	5	None
	6×100	feedforward	610	6	None
	9 × 100	feedforward	910	9	None
	6 × 2 00	feedforward	1,210	6	None
	9 × 200	feedforward	1,810	9	None
	ConvSmall	convolutional	3,604	3	DiffAI [3]
	ConvBig	convolutional	34,688	6	DiffAl
	ConvSuper	convolutional	88,500	6	DiffAl
CIFAR I 0	6×100	feedforward	610	6	None
	ConvSmall	convolutional	4,852	3	DiffAl
ACAS Xu	6 × 50	feedforward	305	6	None

Evaluation

- 3×50 FNN and all CNNs on a 2.6 GHz 14 core Intel Xeon CPU E5-2690
- All remaining FNNs on a 3.3 GHz 10 core Intel i9-7900X Skylake CPU
- Benchmarks:
- property 9 defined in [5] for the ACAS Xu network
- correctly classified images among the first 100 test images for the rest

Results with RefineZono: State-of-the-art precision and scalability

Complete verification

MNIST 3×50 Network

Certify with DeepZ first, if it fails then formulate certification as MILP using per-neuron bounds produced by DeepZ

ϵ	[2] with Intervals	[2] with LP	RefineZono
0.03	123 sec	35 sec	28 sec

ACAS Xu Network

- Uniformly divide the input region into 6,300 smaller regions
- Run complete certification with RefineZono on each region separately

Reluplex [5]	Neurify [4]	RefineZono
> 32 hours	921 sec	227 sec

Incomplete verification

- RefineZono vs. state-of-the-art incomplete verifiers
- DeepZ [1]
- DeepPoly [6]
- Complete verifiers do not scale on these benchmarks
- We chose values of parameters θ , T, δ , β , k_{MILP} , k_{LP} offering best tradeoff between performance and precision for each network

			MNIST Ne				
Model	ϵ	DeepZ		DeepPoly		RefineZono	
		% 🗸	time(s)	%√	time(s)	%√	time(s)
5×100	0.07	38	0.6	53	0.3	53	381
6×100	0.02	31	0.6	47	0.2	67	194
9×100	0.02	28	1.0	44	0.3	59	246
6 × 200	0.015	13	1.8	32	0.5	39	567
9 × 200	0.015	12	3.7	30	0.9	38	826
ConvSmall	0.12	7	1.4	13	6.0	21	748
ConvBig	0.2	79	7	78	61	80	193
ConvSuper	0.1	97	133	97	400	97	665

		C	CIFAR I 0 N				
Model	ϵ	DeepZ		DeepPoly		RefineZono	
		% 🗸	time(s)	%√	time(s)	%√	time(s)
6×100	0.0012	31	4	46	0.6	46	765
ConvSmall	0.03	17	5.8	21	20	21	550

References:

- [1] Fast and Effective Robustness Certification, NeurIPS'18
- [2] Evaluating Robustness of Neural Networks with Mixed Integer Programming, ICLR'19
- [3] Differentiable Abstract Interpretation for Provably Robust Neural Networks, ICML'18 [4] Efficient Formal Safety Analysis of Neural Networks, NeurIPS'18
- [5] Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks, CAV'17
- [6] An Abstract Domain for Certifying Neural Networks, POPL'19