An Abstract Domain for Certifying Neural Networks

Gagandeep Singh Timon Gehr Markus Püschel Martin Vechev

Department of Computer Science

Adversarial input perturbations

Io

 $I \in L_{\infty}(I_0, \epsilon)$

Neural network robustness

Given:

Neural network $f: \mathbb{R}^m \to \mathbb{R}^n$ Perturbation region $\mathcal{R}(I_0, \phi)$

Regions:

 $L_{\infty}(I_0,\epsilon)$: All images I where pixel values in I and I_0 differ by at most ϵ Rotate($I_0, \epsilon, \alpha, \beta$): All images I in $L_{\infty}(I_0,\epsilon)$ rotated by $\theta \in [\alpha,\beta]$

 $\forall I \in \mathcal{R}(I_0, \phi). f(c) > f(j)$ To Prove: where c is the correct output and j is any other output

Challenges

The size of $\mathcal{R}(I_0, \phi)$ grows exponentially in the number of pixels:

cannot compute f(I) for all I separately

Prior Work

- Precise but does not scale:
 - SMT Solving [CAV'17]
 - Input refinement [USENIX'18]
 - Semidefinite relaxations [ICLR'18]
- Scales but imprecise
 - Linear relaxations [ICML'18]
 - Abstract interpretation [S&P'18, **NIPS'18**]

This work: contributions

A new abstract domain combining floating point Polyhedra with Intervals:

- custom transformers for common functions in neural networks such as affine transforms, ReLU, sigmoid, tanh, and maxpool activations
- scalable and precise analysis

First approach to certify robustness under rotation combined with linear interpolation:

• based on refinement of the abstract input

•
$$\epsilon = 0.001, \alpha = -45^{\circ}, \beta = 65^{\circ}$$

Network	ε	NIPS'18	DeepPoly
6 layers3010 units	0.035	proves 21% 15.8 sec	proves 64% 4.8 sec
 6 layers 34,688 units 	0.3	proves 37% 17 sec	proves 43% 88 sec

DeepPoly:

- complete and parallelized end-to-end implementation based on ELINA
- <u>https://github.com/eth-sri/eran</u>

Our Abstract Domain

Shape: associate a lower polyhedral a_i^{\leq} and an upper polyhedral a_i^{\geq} constraint with each x_i

$$a_i^{\leq}, a_i^{\geq} \in \{x \mapsto v + \sum_{j \in [i-1]} w_j \cdot x_j \mid v \in \mathbb{R} \cup \{-\infty, +\infty\}, w \in \mathbb{R}^{i-1}\} \text{ for } i \in [n]$$

Concretization of abstract element *a*: $\gamma_n(a) = \{x \in \mathbb{R}^n \mid \forall i \in [n]. a_i^{\leq}(x) \leq x_i \land a_i^{\geq}(x) \geq x_i\}$

Domain invariant: store auxiliary concrete lower and upper bounds l_i, u_i for each x_i $\gamma_n(a) \subseteq \times_{i \in [n]} [l_i, u_i]$

- captures affine transformation precisely unlike Octagon, TVPI
- custom transformers for ReLU, sigmoid, tanh, and maxpool activations

n: #neurons, *m*: #constraints

 w_{max} : max #neurons in a layer, L:# layers

Transformer	Polyhedra	Our domain		
Affine	$0(nm^2)$	$O(w_{max}^2L)$		
ReLU	$O(\exp(n,m))$	0(1)		

Example: Analysis of a Toy Neural Network

ReLU activation

Pointwise transformer for $x_i \coloneqq max(0, x_i)$ that uses l_i, u_i

$$if \ u_i \le 0, a_j^{\le} = a_j^{\ge} = 0, l_j = u_j = 0, \\ if \ l_i \ge 0, a_j^{\le} = a_j^{\ge} = x_i, l_j = l_i, u_j = u_i, \\ if \ l_i < 0 \ and \ u_i > 0$$

$$egin{aligned} &\langle x_3 \geq x_1 + x_2, \ &\langle x_5 \geq 0, \ &x_3 \leq x_1 + x_2, \ &x_5 \leq 0.5 \cdot x_3 + 1, \ &l_3 = -2, \ &u_5 = 0, \ &u_3 = 2
angle &u_5 = 2
angle \end{aligned}$$

Constant runtime

Affine transformation after ReLU

Imprecise upper bound u_7 by substituting u_5 , u_6 for x_5 and x_6 in a_7^2 ,

Backsubstitution

Affine transformation with backsubstitution is pointwise, complexity: $O(w_{max}^2 L)^{-1}$

Checking for robustness

Prove $x_{11} - x_{12} > 0$ for all inputs in $[-1,1] \times [-1,1]$

$\langle x_{11} \ge x_9 + x_{10} + 1,$	$\langle x_{12} \ge x_{10},$
$x_{11} \le x_9 + x_{10} + 1,$	$x_{11} \le x_{10},$
$l_{11} = 1,$	$l_{12} = 0,$
$u_{11}=5.5 angle$	$u_{12}=2 angle$

Computing lower bound for $x_{11} - x_{12}$ using l_{11} , u_{12} gives -1 which is an imprecise result

With backsubstitution, one gets 1 as the lower bound for $x_{11} - x_{12}$, proving robustness

More complex perturbations: rotations

Challenge: Rotate($I_0, \epsilon, \alpha, \beta$) is non-linear and cannot be captured in our domain unlike $L_{\infty}(I_0, \epsilon)$

Solution: Over-approximate $Rotate(I_0, \epsilon, \alpha, \beta)$ with boxes and use input refinement for precision

Result: Prove robustness for networks under $Rotate(I_0, 0.001, -45, 65)$

More in the paper

Experimental evaluation

- Neural network architectures:
 - fully connected feedforward (FFNN)
 - convolutional (CNN)
- Training:
 - trained to be robust with DiffAI [ICML'18] and PGD [CVPR'18]
 - without adversarial training
- Datasets:
 - MNIST
 - CIFARI0
- DeepPoly vs. state-of-the-art DeepZ [NIPS'18] and Fast-Lin [ICML'18]

Results

MNIST FFNN (3,010 hidden units)

Time (s) Verified robustness - PGD_{0.3} DeepZ - PGD_{0.3} DeepPoly - \square - PGD_{0.1} _ DeepZ - \square - PGD_{0.1} _ DeepPoly \cdots Point DeepZ \cdots Point DeepPoly 100%50% 0% -0.015 0.020 0.025 0.030 0.035 0.040 (a) MNIST 6×500 ReLU

CIFARIO CNNs (4,852 hidden units)

Verified robustness

Time (s)

Large Defended CNNs trained via DiffAI [ICML'18]

Dataset	Model	#hidden units	ε	%verified robustness		Average runtime (s)	
				DeepZ	DeepPoly	DeepZ	DeepPoly
MNIST	ConvBig	34,688	0.1	97	97	5	50
	ConvBig	34,688	0.2	79	78	7	61
	ConvBig	34,688	0.3	37	43	17	88
	ConvSuper	88,500	0.1	97	97	133	400
CIFARIO	ConvBig	62,464	0.006	50	52	39	322
	ConvBig	62,464	0.008	33	40	46	331

Conclusion

Adversarial input perturbations

A new abstract domain combining floating point Polyhedra with Intervals:

n: #neurons, m: #constraints

 w_{max} : max #neurons in a layer, L: # layers

Transformer	Polyhedra	Our domain		
Affine	$0(nm^2)$	$O(w_{max}^2L)$		
ReLU	$O(\exp(n,m))$	0(1)		

Verified robustness

100%

50%

0% 0.015

0.020

0.025

(a) MNIST 6×500 ReLU

0.030

0.035

Time (s)

DeepPoly:

- complete and parallelized end-to-end ٠ implementation based on ELINA
- https://github.com/eth-sri/eran