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Adversarial input perturbations
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Neural network robustness

Neural network 𝑓:ℝ5 ⟶ ℝ7
Perturbation region ℛ 𝐼', 𝜙

𝐿% 𝐼', 𝜖 :All images 𝐼 where 
pixel values in 𝐼	and 𝐼' differ by 
at most 𝜖
Rotate(𝐼', 𝜖,𝛼, 𝛽): All images 𝐼 in 
𝐿% 𝐼', 𝜖 rotated by 𝜃 ∈ [𝛼, 𝛽]

∀𝐼 ∈ ℛ 𝐼', 𝜙 . 𝑓 𝑐 > 𝑓(𝑗)
where c is the correct output 
and j is any other output

Given:

Regions:

To Prove:

The size of ℛ 𝐼', 𝜙 grows exponentially 
in the number of pixels: 
• cannot compute f 𝐼 for all 𝐼 separately

• Precise but does not scale:
• SMT Solving [CAV’17]
• Input refinement [USENIX’18]
• Semidefinite relaxations [ICLR’18]

• Scales but imprecise
• Linear relaxations [ICML’18]
• Abstract interpretation [S&P’18, 

NIPS’18]

Challenges

Prior Work
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This work: contributions

A new abstract domain combining floating 
point Polyhedra with Intervals:

• custom transformers for common functions in 
neural networks such as affine transforms, 
ReLU, sigmoid, tanh, and maxpool activations

• scalable and precise analysis

First approach to certify robustness under 
rotation combined with linear interpolation: 

• based on refinement of the abstract input
• 𝜖 = 0.001, 𝛼 = −45I, 𝛽 = 65I

DeepPoly: 
• complete and parallelized end-to-end 

implementation based on ELINA
• https://github.com/eth-sri/eran

Network 𝝐 NIPS’18 DeepPoly

Ø 6 layers
Ø 3010 units

0.035 proves 21%
15.8 sec

proves 64%
4.8 sec

Ø 6 layers
Ø 34,688 units

0.3 proves 37%
17 sec

proves 43%
88 sec
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Our Abstract Domain 
Shape:  associate a lower polyhedral 𝑎LM	and an upper polyhedral 𝑎LN constraint with each 𝑥L

• less precise than Polyhedra, restriction 
needed to ensure scalability 

• captures affine transformation precisely 
unlike Octagon, TVPI

• custom transformers for ReLU, sigmoid, 
tanh, and maxpool activations 

Concretization of abstract element 𝑎:

Domain invariant:  store auxiliary concrete lower and upper bounds 𝑙L, 𝑢L for each 𝑥L
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Transformer Polyhedra Our domain

Affine Ο(𝑛𝑚U) Ο(𝑤5WXU 𝐿)

ReLU Ο(exp	(𝑛,𝑚)) Ο(1)

𝑛: #neurons, 𝑚:#constraints
𝑤5WX: max #neurons in a layer, 𝐿: # layers



Example: Analysis of a Toy Neural Network

𝑥] 𝑥^ 𝑥_ 𝑥]]

𝑥U

𝑥` 𝑥a

𝑥b 𝑥c 𝑥d 𝑥]' 𝑥]U

1 max	(0, 𝑥^) 1 1

−1 −1 1

max	(0, 𝑥`)

max	(0, 𝑥b) max	(0, 𝑥d)

1 1 1

1 1 0
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Input layer Output layerHidden layers
0 0 1

0 0 0
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𝑥] 𝑥^ 𝑥_ 𝑥]]

𝑥U

𝑥` 𝑥a

𝑥b 𝑥c 𝑥d 𝑥]' 𝑥]U

1 max	(0, 𝑥^) 1 1

−1 −1 1

max	(0, 𝑥`)

max	(0, 𝑥b) max	(0, 𝑥d)

1 1 1

1 1 0

[−1,1]
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0 0 1

0 0 0
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ReLU activation

𝑥^ 𝑥_

𝑥b 𝑥c

max	(0, 𝑥^)

max	(0, 𝑥b)

Pointwise transformer for 𝑥g ≔ 𝑚𝑎𝑥(0, 𝑥L) that uses 𝑙L, 𝑢L
𝑖𝑓	𝑢L ≤ 0, 𝑎gM = 𝑎gN = 0, 𝑙g = 𝑢g = 0,	
𝑖𝑓	𝑙L ≥ 0, 𝑎gM = 𝑎gN = 𝑥L, 𝑙g = 𝑙L, 𝑢g = 𝑢L,	
𝑖𝑓	𝑙L < 0	𝑎𝑛𝑑	𝑢L > 0

choose (b) or (c) depending on the area

Constant runtime 8



Affine transformation after ReLU

𝑥_

𝑥`

𝑥c

0

1

1

Imprecise upper bound	𝑢` by substituting 𝑢_, 𝑢c for 𝑥_ and 𝑥c in 𝑎`N 9



Backsubstitution

𝑥_

𝑥`

𝑥c

0

1

1
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Affine transformation with backsubstitution is pointwise, complexity: Ο 𝑤5WXU 𝐿

𝑥_

𝑥`

𝑥c

0

1

1𝑥^

𝑥b

max	(0, 𝑥^)

max	(0, 𝑥b)

0

0

𝑥]

𝑥U

1

−1

1

1
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𝑥] 𝑥^ 𝑥_ 𝑥]]

𝑥U

𝑥` 𝑥a

𝑥b 𝑥c 𝑥d 𝑥]' 𝑥]U

1 max	(0, 𝑥^) 1 1

−1 −1 1

max	(0, 𝑥`)

max	(0, 𝑥b) max	(0, 𝑥d)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0
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Checking for robustness

Prove 𝑥]] − 𝑥]U > 0	for all inputs in −1,1 ×[−1,1]

Computing lower bound for 𝑥]] − 𝑥]U using 𝑙]], 𝑢]U gives -1 which is an imprecise result

With backsubstitution, one gets 1 as the lower bound for 𝑥]] − 𝑥]U, proving robustness 13



More complex perturbations: rotations
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Solution: Over-approximate Rotate(𝐼', 𝜖,𝛼, 𝛽) with boxes and use input refinement for precision

Challenge: Rotate(𝐼', 𝜖,𝛼, 𝛽) is non-linear and cannot be captured in our domain unlike 𝐿% 𝐼', 𝜖

Result:  Prove robustness for networks under Rotate(𝐼', 0.001,-45,65)



More in the paper
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Sigmoid transformer Tanh transformer
Maxpool transformer

Floating point soundness



Experimental evaluation

• Neural network architectures:
• fully connected feedforward (FFNN)
• convolutional (CNN)

• Training:  
• trained to be robust with DiffAI [ICML’18] and PGD [CVPR’18]
• without adversarial training 

• Datasets:
• MNIST
• CIFAR10

• DeepPoly vs. state-of-the-art DeepZ [NIPS’18] and Fast-Lin [ICML’18]
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Results
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MNIST FFNN (3,010 hidden units)
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CIFAR10 CNNs (4,852 hidden units)
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Large Defended CNNs
trained via DiffAI [ICML’18]

Dataset Model #hidden units 𝝐 %verified robustness Average runtime (s)

DeepZ DeepPoly DeepZ DeepPoly

MNIST ConvBig 34,688 0.1 97 97 5 50

ConvBig 34,688 0.2 79 78 7 61

ConvBig 34,688 0.3 37 43 17 88

ConvSuper 88,500 0.1 97 97 133 400

CIFAR10 ConvBig 62,464 0.006 50 52 39 322

ConvBig 62,464 0.008 33 40 46 331
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Conclusion

DeepPoly: 
• complete and parallelized end-to-end 

implementation based on ELINA
• https://github.com/eth-sri/eran
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A new abstract domain combining floating 
point Polyhedra with Intervals:

Transformer Polyhedra Our domain

Affine Ο(𝑛𝑚U) Ο(𝑤5WXU 𝐿)
ReLU Ο(exp	(𝑛,𝑚)) Ο(1)

𝑛: #neurons, 𝑚:#constraints
𝑤5WX: max #neurons in a layer, 𝐿: # layers


