
An Abstract Domain for Certifying Neural Networks

Gagandeep Singh Timon Gehr Markus Püschel Martin Vechev

Department of Computer Science

1

Adversarial input perturbations

8

7

𝐼"

𝐼 ∈ 𝐿%(𝐼', 𝜖)

9

𝐼 ∈ 𝑅𝑜𝑡𝑎𝑡𝑒(𝐼', 𝜖,𝛼, 𝛽)
2

Neural network f

Neural network f

Neural network f

Neural network robustness

Neural network 𝑓:ℝ5 ⟶ ℝ7
Perturbation region ℛ 𝐼', 𝜙

𝐿% 𝐼', 𝜖 :All images 𝐼 where
pixel values in 𝐼	and 𝐼' differ by
at most 𝜖
Rotate(𝐼', 𝜖,𝛼, 𝛽): All images 𝐼 in
𝐿% 𝐼', 𝜖 rotated by 𝜃 ∈ [𝛼, 𝛽]

∀𝐼 ∈ ℛ 𝐼', 𝜙 . 𝑓 𝑐 > 𝑓(𝑗)
where c is the correct output
and j is any other output

Given:

Regions:

To Prove:

The size of ℛ 𝐼', 𝜙 grows exponentially
in the number of pixels:
• cannot compute f 𝐼 for all 𝐼 separately

• Precise but does not scale:
• SMT Solving [CAV’17]
• Input refinement [USENIX’18]
• Semidefinite relaxations [ICLR’18]

• Scales but imprecise
• Linear relaxations [ICML’18]
• Abstract interpretation [S&P’18,

NIPS’18]

Challenges

Prior Work

3

This work: contributions

A new abstract domain combining floating
point Polyhedra with Intervals:

• custom transformers for common functions in
neural networks such as affine transforms,
ReLU, sigmoid, tanh, and maxpool activations

• scalable and precise analysis

First approach to certify robustness under
rotation combined with linear interpolation:

• based on refinement of the abstract input
• 𝜖 = 0.001, 𝛼 = −45I, 𝛽 = 65I

DeepPoly:
• complete and parallelized end-to-end

implementation based on ELINA
• https://github.com/eth-sri/eran

Network 𝝐 NIPS’18 DeepPoly

Ø 6 layers
Ø 3010 units

0.035 proves 21%
15.8 sec

proves 64%
4.8 sec

Ø 6 layers
Ø 34,688 units

0.3 proves 37%
17 sec

proves 43%
88 sec

4

Our Abstract Domain
Shape: associate a lower polyhedral 𝑎LM	and an upper polyhedral 𝑎LN constraint with each 𝑥L

• less precise than Polyhedra, restriction
needed to ensure scalability

• captures affine transformation precisely
unlike Octagon, TVPI

• custom transformers for ReLU, sigmoid,
tanh, and maxpool activations

Concretization of abstract element 𝑎:

Domain invariant: store auxiliary concrete lower and upper bounds 𝑙L, 𝑢L for each 𝑥L

5

Transformer Polyhedra Our domain

Affine Ο(𝑛𝑚U) Ο(𝑤5WXU 𝐿)

ReLU Ο(exp	(𝑛,𝑚)) Ο(1)

𝑛: #neurons, 𝑚:#constraints
𝑤5WX: max #neurons in a layer, 𝐿: # layers

Example: Analysis of a Toy Neural Network

𝑥] 𝑥^ 𝑥_ 𝑥]]

𝑥U

𝑥` 𝑥a

𝑥b 𝑥c 𝑥d 𝑥]' 𝑥]U

1 max	(0, 𝑥^) 1 1

−1 −1 1

max	(0, 𝑥`)

max	(0, 𝑥b) max	(0, 𝑥d)

1 1 1

1 1 0

[−1,1]

[−1,1]

Input layer Output layerHidden layers
0 0 1

0 0 0

6

𝑥] 𝑥^ 𝑥_ 𝑥]]

𝑥U

𝑥` 𝑥a

𝑥b 𝑥c 𝑥d 𝑥]' 𝑥]U

1 max	(0, 𝑥^) 1 1

−1 −1 1

max	(0, 𝑥`)

max	(0, 𝑥b) max	(0, 𝑥d)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0

7

ReLU activation

𝑥^ 𝑥_

𝑥b 𝑥c

max	(0, 𝑥^)

max	(0, 𝑥b)

Pointwise transformer for 𝑥g ≔ 𝑚𝑎𝑥(0, 𝑥L) that uses 𝑙L, 𝑢L
𝑖𝑓	𝑢L ≤ 0, 𝑎gM = 𝑎gN = 0, 𝑙g = 𝑢g = 0,	
𝑖𝑓	𝑙L ≥ 0, 𝑎gM = 𝑎gN = 𝑥L, 𝑙g = 𝑙L, 𝑢g = 𝑢L,	
𝑖𝑓	𝑙L < 0	𝑎𝑛𝑑	𝑢L > 0

choose (b) or (c) depending on the area

Constant runtime 8

Affine transformation after ReLU

𝑥_

𝑥`

𝑥c

0

1

1

Imprecise upper bound	𝑢` by substituting 𝑢_, 𝑢c for 𝑥_ and 𝑥c in 𝑎`N 9

Backsubstitution

𝑥_

𝑥`

𝑥c

0

1

1

10

Affine transformation with backsubstitution is pointwise, complexity: Ο 𝑤5WXU 𝐿

𝑥_

𝑥`

𝑥c

0

1

1𝑥^

𝑥b

max	(0, 𝑥^)

max	(0, 𝑥b)

0

0

𝑥]

𝑥U

1

−1

1

1

11

𝑥] 𝑥^ 𝑥_ 𝑥]]

𝑥U

𝑥` 𝑥a

𝑥b 𝑥c 𝑥d 𝑥]' 𝑥]U

1 max	(0, 𝑥^) 1 1

−1 −1 1

max	(0, 𝑥`)

max	(0, 𝑥b) max	(0, 𝑥d)

1 1 1

1 1 0

[−1,1]

[−1,1]

0 0 1

0 0 0

12

Checking for robustness

Prove 𝑥]] − 𝑥]U > 0	for all inputs in −1,1 ×[−1,1]

Computing lower bound for 𝑥]] − 𝑥]U using 𝑙]], 𝑢]U gives -1 which is an imprecise result

With backsubstitution, one gets 1 as the lower bound for 𝑥]] − 𝑥]U, proving robustness 13

More complex perturbations: rotations

14

Solution: Over-approximate Rotate(𝐼', 𝜖,𝛼, 𝛽) with boxes and use input refinement for precision

Challenge: Rotate(𝐼', 𝜖,𝛼, 𝛽) is non-linear and cannot be captured in our domain unlike 𝐿% 𝐼', 𝜖

Result: Prove robustness for networks under Rotate(𝐼', 0.001,-45,65)

More in the paper

15

Sigmoid transformer Tanh transformer
Maxpool transformer

Floating point soundness

Experimental evaluation

• Neural network architectures:
• fully connected feedforward (FFNN)
• convolutional (CNN)

• Training:
• trained to be robust with DiffAI [ICML’18] and PGD [CVPR’18]
• without adversarial training

• Datasets:
• MNIST
• CIFAR10

• DeepPoly vs. state-of-the-art DeepZ [NIPS’18] and Fast-Lin [ICML’18]

16

Results

17

MNIST FFNN (3,010 hidden units)

18

CIFAR10 CNNs (4,852 hidden units)

19

Large Defended CNNs
trained via DiffAI [ICML’18]

Dataset Model #hidden units 𝝐 %verified robustness Average runtime (s)

DeepZ DeepPoly DeepZ DeepPoly

MNIST ConvBig 34,688 0.1 97 97 5 50

ConvBig 34,688 0.2 79 78 7 61

ConvBig 34,688 0.3 37 43 17 88

ConvSuper 88,500 0.1 97 97 133 400

CIFAR10 ConvBig 62,464 0.006 50 52 39 322

ConvBig 62,464 0.008 33 40 46 331

20

Conclusion

DeepPoly:
• complete and parallelized end-to-end

implementation based on ELINA
• https://github.com/eth-sri/eran

21

A new abstract domain combining floating
point Polyhedra with Intervals:

Transformer Polyhedra Our domain

Affine Ο(𝑛𝑚U) Ο(𝑤5WXU 𝐿)
ReLU Ο(exp	(𝑛,𝑚)) Ο(1)

𝑛: #neurons, 𝑚:#constraints
𝑤5WX: max #neurons in a layer, 𝐿: # layers

