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I Background: Randomized Smoothing ‘

Logits:
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Predictions:
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+ Probabilistic Reliability Guarantee
X, 0‘ z Y, (“The prediction is robust.”)




I Overview of Phoenix
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I Argmax Approximation

Algorithm 2 Approximation of ARGMAX for RNS-CKKS

1: function ArRgMaXxHE

i Bound P(violation) gt = 5, 5o 0% ) ) 4, 4
0 Output: y = [yy,. .., ye, #¢] as in Eq. (5)
a— é3)

Full algorithm

Conditions + Rescale - in our paper
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I Implementation & Evaluation

Consistency The results are equivalent to
~ the ones obtained in
Available on GitHub: non-private evaluation

Q eth-sri/phoenix

Efficiency . Viable latencies and

* communication costs




I Summary: Phoenix
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